• / 7
  • 下载费用:5 下载币  

3D地震技术在萨北高台子油层窄小河道砂体剩余油挖潜中的应用_齐金成

关 键 词:
地震 技术 高台 油层 窄小 河道 剩余 挖潜 中的 应用 齐金成
资源描述:
3D地震技术在萨北高台子油层窄小河道砂体剩余油挖潜中的应用SPG/SEG北京2016国际地球物理会议3D地震技术在萨北高台子油层窄小河道砂体剩余油挖潜中的应用齐金成①陈丽艳②李红星①周华建①庞春红①(①大庆油田有限责任公司勘探开发研究院,黑龙江大庆,163712;②大庆油田有限责任公司第一采油厂,黑龙江大庆,163000)摘要:大庆萨尔图油田高台子油层属于陆相河流-三角洲体沉积体系,具有严重的平面非均质性,单纯应用井资料的储层表征精度难以满足特高含水期剩余油挖潜的需求。为此,引入3D地震技术,并在地震采集、处理、储层预测和井震结合储层表征阶段采用具有针对性的技术,提高储层表征精度。储层表征结果在萨尔图油田北一开发区高台子油层三角洲水下分流窄小河道砂体的剩余油挖潜中应用,取得了较好的效果。本项目研究对于在类似地质和开发条件油田的剩余油挖潜中应用3D地震技术具有一定的借鉴意义。关键词:储层表征窄河道高密度地震地震沉积学剩余油1引言大庆长垣萨尔图油田已进入特高含水期,剩余油呈“整体高度分散,局部富集”的状态[1]。剩余油挖潜,提高原油采收率,逐渐成为油田生产的主要任务。目前,萨尔图油田密井网区剩余油挖潜效果存在两极化趋势:大面积分布、井网控制程度较高的油层,剩余油挖潜效果较好;规模较小、展布规律性较差、井网控制程度较低的砂体的剩余油挖潜效果较差。在剩余油挖潜效果较差的储层中,北一区高台子油层的三角洲前缘窄小分流河道砂体具有一定的代表性。对于井网控制程度较低的砂体来说,易于造成注采不完善,形成剩余油的相对富集;同时,由于基于井的储层表征精度低,无法制定有针对性的剩余油挖潜措施,造成挖潜难。剩余油是由地质因素与开发因素相互作用的结果,只有在提高储层表征精度的前提下,结合井网注采方式,才能够有效地分析剩余潜力,实现有针对性的剩余油挖潜。本文引入高密度3D地震技术,井震结合提高河道砂体描述精度[2-7]。基于地震属性的储层表征结果在萨尔图油田北一开发区三角洲前缘水下窄小河道砂体的剩余油挖潜中取得了较好效果。本文形成的技术方法对具有高密度地震资料和类似沉积环境的开发区的剩余油挖潜具有一定的借鉴意义。2研究区地质开发概况大庆萨尔图油田高台子油层沉积于晚白垩纪古宋辽盆地整体凹陷期,是受北部物源控制的大型陆相河流-三角洲沉积体系。高台子油层沉积时期,萨尔图油田北一开发区整体上处于三角洲前缘位置,沉积了五种典型砂体:三角洲内前缘枝状砂体、枝坨过渡状砂体、坨状砂体、外前缘稳定席状砂、不稳定席状砂。油层厚度约300m,分为4个油层组、23个砂岩组、92个沉积单元,且具有严重平面非均质性。区内断层较少。北一区高台子油层于1982年10月投产,采用300×300m反九点法面积井网。投产初期平均单井日产油13t。近年来产能递减趋势明显,到2009年,平均单井日产油降至5t,产量递减幅度达69.4%。然而,原油采出程度并不高。以水下分流河道砂体为例,复杂的油水井间连通状况导致这部分储量的动用程度只有40~50%左右。所以,这部分储层剩余油相对富集,存在较大的挖潜空间。3关键技术3.1地震采集3.1.1小面元地震采集岩石物理研究表明,萨尔图油田萨葡高目的层段砂、泥岩声波速度基本相同,约为3000m/s;而砂泥岩的密度相差较大,分别为2.0g/cm3和833D地震技术在萨北高台子油层窄小河道砂体剩余油挖潜中的应用SPG/SEG北京2016国际地球物理会议2.4g/cm3。由于砂泥岩地层间存在较大波阻抗差别,3D地震资料中包含有明确的砂泥岩信息。相比萨尔图油田平均100m的井距,常规3D地震(最小面元为20×20m)在空间分辨上的相对优势已不明显,对提高小尺度储层表征精度的作用有限。为此,2008年大庆油田公司采用高密度地震技术,采集了面元为10×10m、覆盖萨尔图油田全区的690Km2的3D地震资料,为应用3D地震资料表征更小尺度的地质体提供了可能。3.1.2高密度的微测井由于地表条件复杂,萨尔图油田3D高密度的地震采用的微测井密度由常规探区平均1口/Km2提高到平均5口/Km2,为建立更加精确的长波长地表模型,进而实现地震资料准确成像奠定了基础。3.2基于现有地质认识的目标处理对于纵横向展布尺度较大、应用密井网(100口/Km2)资料解剖相对清晰的地质体来说,高密度地震资料采集相当于已知模型的正演,地震处理和解释则是在已知目标条件下的反演。在处理过程中引入解释手段,处理解释一体化,使处理的目标更加明确。通过反复处理解释,在使得这些规模较大地质体得到最清晰再现的同时,优选了处理方法和参数,确保了地震资料成像质量。3.3地震沉积学储层预测[2]储层预测的方法高密度3D地震资料的优势在于空间分辨率,而地震沉积学地层切片储层预测方法可以充分地挖掘地震空间高分辨率优势,但若要实现小层级储层的横向展布趋势预测,需要处理好以下关键技术环节。3.3.190°相移零相位子波条件下,薄层的地震响应波形为“S”形或反“S”形,通过90°相移可以实现薄层与地震响应的主波峰或主波谷相对应,使地震响应数据体具有了更加明确的岩性意义。3.3.2小层等时地层格架制作小层地层格架是应用地层切片进行储层预测的基础和前提,只有在具有相对等时小层地层格架的基础上,才能实现小层级储层的预测。由于目的层段小层的平均厚度只有3m左右,远远小于目的层段地震分辨率(约为15m),而目的层段小层平均厚度只有3m左右,小层界面无法通过地震解释直接获得。为获取时间域小层的等时地层格架,采用如下方法:首先,标定并解释紧邻目的小层上方和下方的地震反射标志层,得到相应的等时界面;然后,在顶底等时界面的约束下,通过建模的方法得到小层对应的时间域界面。根据本区目的层段连续稳定的沉积特点,采用平行于顶底、等分的建模方法制作小层对应的时间域界面。3.3.3地震属性优选目前地震属性有上百种,而且每种属性均有其明确的地质和地球物理意义。如何在众多属性中优选出有效的属性成为地震储层预测成败的关键。开发区大量的井资料为地震属性的优选提供了便利条件。首先,应用不同地震属性对某一小层进行储层预测;然后,应用井资料对储层预测结果进行标定;最后,根据井震匹配程度实现地震属性优选。砂泥岩薄互层条件下地震振幅与薄层厚度之间的相关关系使振幅类属性成为最有效的地震属性之一。本文应用的振幅属性是组成地震数据体的地震样点值,即应用小层的时间界面对原始地震数据体采样作为储层预测结果。3.4井震结合储层描述地震趋势引导,井点微相控制,实现相对较厚河道砂体的有效表征。受有限纵向分辨限制,同一张地层切片预测的储层的横向展布趋势是以目标小层为中心的几个相邻小层的综合反映,需要对切片预测结果进行解析,确定河道砂体的小层归属。与地震相比,密井网资料具有明显的纵向分辨优势,可在判断地层切片预测河道砂体的纵向层位归属上发挥重要作用。一是以目标小层为中心制作系列小层的地层切片。参照基于井资料制作的系列小层等厚图,初步确定河道砂体储层的沉积演化规律及其大致归属。二是在第一步分析的基础上,利用测井资料的纵向分辨优势,实现小层储层的表征。首先,应用井资料验证地层切片中的河道砂体是否属于目的小层,并且表征属于目的小层的河道砂体;然后,参考得到预测并表征的河道的展布趋势和规模,基于井资料表征没有得到地层切片预测的河道砂体及其它储层的展布范围。是否得到地层切片预测直接影响到储层表征的精度。对于得到地层切片预测的河道砂体来说,由于既得到了地震的预测又得到了井点资料的验证,其储层表征的精度是有保障的,针对这类储层的剩余有挖潜效果也是有保障的。而843D地震技术在萨北高台子油层窄小河道砂体剩余油挖潜中的应用SPG/SEG北京2016国际地球物理会议对于未被地层切片预测的储层来说,由于储层没有得到地震预测,其刻画精度相对前者有所下降。但是由于这类储层参考了得到地层切片预测的河道砂体的规模及展布趋势,其表针精度相对于完全基于井资料的储层表征精度会有一定程度的提高,仍可作为剩余油挖潜的有效依据。4调整挖潜应用在高密度3D地震采集和基于目标处理的基础上,对北一区高台子油层进行了小层级储层预测和井震结合储层表征。图2是该区GI6+7小层的地震储层预测结果;图3是该区GI6+7小层的井震结合储层表征结果沉积微相图。与完全基于井资料的沉积微相表征的沉积微相图相比(图1),井震结合表征的三角洲水下分流河道砂体的展布形态发生了明显的变化。根据井震结合表征结果对该小层进行了剩余潜力分析和挖潜。图1高I6+7小层基于井资料的沉积相带图(图中蓝框为图4对应区域)图2高I6+7小层的地层切片(图中蓝框为图4对应区域)图3高I6+7小层井震结合的沉积相带图(图中蓝框为图4对应的区域)4.1潜力分析以采油井高107-47为例,该井1987年9月投入生产,开采高I10-高III10沉积单元,补孔前日产液14.1t,日产油1.5t,含水87.0%,属于低效井。应用基于井资料表征的沉积相带图(图1),2011年7月对该井高I2+3、高I4+5小层实施补孔,但并未对GI6+7小层的河道砂体补孔。因为沉积相带图(图4A)显示,该井高I6+7单元的水下分流河道砂体与同井组注水井高105-48钻遇的水下分流河道砂体属于同一条河道,由于这类分流河道砂体连通性好,是高含水层的可能性较大,故未补孔。2014年底,根据井震结合表征的高I6+7小层沉积微相图对高7-47井组的注采关系进行了重新分析(图4B,C)。与以往的分析相比,注采关系发生了很大的变化:高7-47井钻遇的窄小河道与其注水井高5-48钻遇的窄小河道并非同一河道。两口井之间发育不稳定席状砂体。注采井之间较差连通关系导致高7-47井钻遇的窄小河道存在井网控制不住剩余油,可实施补孔挖潜。4.2挖潜效果根据新的注采关系分析结果,2015年3月对高7-47井高I6+7小层实施二次补孔。从措施效果来看,补孔初期日增油8.1t,到2015年8月日增油仍达6.4t,二次补孔累计增油1150t,经济效益显著。A井资料的沉积相带图B层切片储层预测结果C井震结合沉积相带图图47-47井组注采关系及剩余潜力分析图853D地震技术在萨北高台子油层窄小河道砂体剩余油挖潜中的应用SPG/SEG北京2016国际地球物理会议截至目前,应用井震结合储层表征结果,本区已实施了水下分流窄小河道砂体补孔17口井,平均单井日增油6.4t,挖潜效果明显。5结论本文通过采用系列有针对性的技术,提高了地震储层预测、以及井震结合储层表征精度,储层表征结果在高含水后期剩余油挖潜中见到了良好的效果。这一事实说明,3D地震技术在解决开发后期的地质问题方面仍然具有不可替代的作用。参考文献[1]韩大匡.准确预测剩余油相对富集区提高油田注水采收率研究.石油学报,2007,28(2):73~78.[2]ZengHongliu,HenrySG,RiolaJP.Stratalslcing,partII:realseismicdata[J].Geophysics,1998,63(2):515-522.[3]ZengHongliu,BackusMM,BarrowKT,etal.Stratalslicing,partI:realistic3-Dseismicmodel[J].Geophysics,1998,63(2):502-513.[4]ZengHongliu,BackusMM.Interpretiveadvantagesof90o-phasewavelets:Part1–modeling[J].geophysics,2005,70(3):7-15.[5]ZengHongliu,BackusMM.Interpretiveadvantagesof90o-phasewavelets:Part2–seismicapplications[J].Geophysics,2005,70(3):7-24.[6]张涛,林承焰,张宪国,等.开发尺度的曲流河储层内部结构地震沉积学解释方法[J].地学前缘,2012,19(2):74-79.[7]郝兰英,郭亚杰,李杰,等.地震沉积学在大庆长垣密井网条件下储层精细描述中的初步应用[J].地学前缘,2012,19(3):81-86.姓名:齐金成单位:大庆油田勘探开发研究院电话:13836893812E-mail:qijincheng@petrochina.com.cn86Anapplicationof3DseismictechnologyintappingpotentialofremainingoilofnarrowchannelsandbodyinSaertuoilfieldSPG/SEGBeijing2016InternationalGeophysicalConferenceAnapplicationof3DseismictechnologyintappingpotentialofremainingoilofnarrowchannelsandbodyinSaertuoilfieldQIJinchegng1*,CHENLiyan2,LIHongxing1,ZHOUHuajian1,PANGChunhong11.DaqingOilfieldExplorationandDevelopmentInstitute,Daqing,163712,China2.ThefirstoilproductioncorporationofDaqingOilfield,Daqing,163000,ChinaSummaryThereservoirofGaotaizioillayerofDaqingSaertuoilfieldisafuvial-deltasedimentarysystemwithstronglateralheterogeneity.Althoughaveragingwelldensityisabout100well/Km2,theaccuracyofreservoircharacterizationbaseonwellloggingdatacouldnotsatisfytheneedfortappingremainingoilpotentialintheoildevelopmentperiodofextrahighwatercut.Hence,3Dseismictechnologywasintroduced,andaseriesofobject-basedtechniquessuchashighdensity3Dseismicacquisition,object-baseddataprocessing,seismicsedimentologyreservoirpredictionandwell-to-seismicintegratingreservoircharacterizationwereappliedtoimprovetheaccuracyofseismicreservoirpredictionandreservoircharacterization.ThereservoircharacterizationresultwasusedandgotgoodeffectintappingremainingoilpotentialforDeltaunderwaterdistributarychannelsandbodiesofGaotaizioillayerofBeiyidevelopmentzoneinSaertuoilfield.Thisstudycouldbeareferencetootheroilfieldsthathavesimilargeologicalanddevelopmentalconditionswhenusing3Dseismictechnologytotapremainingoilpotential.IntroductionDaqingSaertuoilfieldhasenteredoildevelopmentperiodofextrahighwatercut,andthedistributionstateofremainingoilishighlyscatteredoverallandlocallyrich[1].Tappingremainingoiltoenhanceoilrecoveryhasbecomethemajortaskinoilproduction.TheeffectoftappingremainingoilpotentialinDaqingSaertuoilfieldshowstwooppositeresults:theeffectisgoodforsandbodieswithlargelateraldistributionandhighwellcontrollevel;theeffectispoorforothersand-bodieswithirregulardistribution,smallscaleandlowwellcontrollevel.DeltafrontdistributarynarrowchannelsandbodyofGaotaizioillayerofBeiyidevelopmentzoneisoneoftherepresentativereservoirsonwhichtappingremainingoilpotentialhaspooreffect.Forsandbodieswithlowwellcontrollevel,itiseasytoleadtoincompleteinjection-productionrelationandresultinrichremainingoil;meanwhile,becauseofthelowaccuracyofreservoirdescriptionbasedonwelldata,itishardtoestablishmeasurestotaptherelativerichremainingoil.Becauseremainingoilistheresultofinteractionbetweengeologicalsettingsanddevelopmentfactors,potentialanalysisandtappingofremainingoilpotentialcouldbeachievedonlyonthepremiseofimprovedaccuracyofreservoirdescription.Thispaperintroduceshighdensity3Dseismictechnology,integratedwithhighdensitywelldatatoincreasetheaccuracyofreservoircharacterization.ReservoircharacterizationresultsbasedontheseismicattributehasbeenusedinanalyzingandtappingremainingoilpotentialofdeltafrontunderwaternarrowchannelsandbodiesinBeiyidevelopmentzoneofSaertuoilfield,andhasachievedgoodresults.Thetechniquesappliedinthisstudycouldbeareferencetootheroilfieldsthathavesimilargeologicalanddevelopmentalconditionswhenusing3Dseismictechnologytotapremainingoilpotential.GeologicsettingsanddevelopmenthistoryTheGaotaizioillayerofDaqingSaertuoilfielddepositedinlateCretaceouswhentheancientSongliaobasinwasintheperiodofoveralldepression,anditisapartoflargecontinentalfluvial-deltasedimentarysystemcontrolledmainlybythenorthernsedimentarysource.Initsdepositionalperiod,thestudyarea,Beiyidevelopmentzonewasmostlyatthedeltafrontposition.FivetypesofsandbodiesweredepositedinGaotaizioillayer:dendriticdeltaicsandbody,cuspatedeltaicsandbody,dendritic-cuspatetransitionalformdeltaicsandbody,deltafrontstablesandsheet,deltafrontunstablesandsheet.Theoillayerisabout300mthick,andisdividedinto4reservoirgroups,23sandstonegroupsand92sedimentarylayerswithstronglateralHeterogeneity.FaultislessdevelopedintheBeiyidevelopmentzone.GaotaizioillayerofBeiyidevelopmentzonewasputintoproductionsinceDec.1982with300x300minvertednine-spotwellpattern.Initialaveragedailyoiloutputperoilwellisabout13t.OilproductionCapacityhasshownatendencyofaccelerateddecreaseinrecentyears.Theaverageoiloutputperoilwellfellto5tby2010,andoilproductiondeclinationrateis69.4%.Moreover,theoilrecoveryfactorisnotveryhigh.Takingdendriticdeltaicsandbodyreservoirasanexample,therecoverypercentoftherecoverablereservesisonlyabout50%duetotheincompleteinjection-productionrelation.Sothesetypesofreservoirshaverelativelyricherremainingoiltobeexploited.Keytechnologies3Dseismicisaneffectivetechnologytoprovideinter-wellgeologicalinformationdirectly,andithasbeenusedsuccessfullyinsolvingthegeologicalproblemsintheperiodofoilfieldexplorationandearlyevaluation.However,inordertosolvesmallerscalegeologicalproblemssuchastheremainingoildistributioninlaterstageofoilproduction,suitabletechniquesshouldbeintroducedatallstagesfromtheseismicdataacquisition,processingandinterpretationtoimprovetheaccuracyofseismicreservoirpredictionandcharacterization.SeismicacquisitionSmallbinsizeseismicacquisitionComparedwiththeaveragewellspacingofabout60minsomedevelopingzonesofSaertuoilfield,thespatialresolutionadvantageofconventional3Dseismic(minimumbinsize20x20m)isnotobvious,andithaslimitedrolesinimprovingtheaccuracyofreservoircharacterization.Therefore,Daqingoilfieldcompanyacquired690Km2highdensity3Dseismicdata(binseize10x10m)overentireSaertuoilfieldin2008toimprovethecharacterization76Anapplicationof3DseismictechnologyintappingpotentialofremainingoilofnarrowchannelsandbodyinSaertuoilfieldSPG/SEGBeijing2016InternationalGeophysicalConferenceaccuracyofreservoirs.HighdensityofmicrologgingDuetocomplicatedsurfaceconditions,thedensityofseismicloggingis5well/Km2intheacquisitionprojectinsteadof1well/Km2ofconventional3Dseismicprojects,anditlaidasolidfoundationforestablishingamoreaccuratelongwavelengthsurfacemodelandmoreaccurateseismicdataimaging.Object-basedseismicdataprocessingForgeo-bodiesthathavealreadybeenclearlycharacterizedhorizontallyandverticallyusingdensewellpatterndata,seismicdataacquisitionisequivalenttotheknownmodelforwarding,andseismicdataprocessingandinterpretationisaknowntargetinversion.Introducingseismicinterpretationinthedataprocessing,i.e.,integratingseismicprocessingandinterpretation,makesthegoalofseismicdataprocessingclearerThroughrepeateddataprocessingandinterpretation,thedataprocessingmethodsandparametersareoptimized,sotheseismicdataimagingqualityisensured.Seismicsedimentologyreservoirprediction[2]Theadvantageof3Dseismicdataisitsspatialresolution,andtheseismicsedimentologyreservoirpredictionmethodcantakefulladvantageof3Dseismicdatatopredictthelateraldistributionofthinlayers.Inordertopredictsmallscalereservoirsandmeetoildevelopmentrequirement,thefollowingkeytechnologieswereapplied.90°phaseshiftUndertheconditionofzerophasewavelet,theseismicwaveformofathinlayerisintheshapeof"S"orreversedshapeof"S",anditspeak-to-troughortrough-to-peaktransitpointcorrespondstothemidofthethinlayer.With90°phaseshiftontheseismicresponse,"S"shapeorreversed"S"shapecanbetransformedintotheshapeofonepeakoronetroughwhichcorrespondsdirectlytothemiddleofthethinlayer,sothatthelithologymeaningoftheseismicresponseisclearer.Establishmentofsedimentarylayer’sisochronousstratigraphicframeworkEstablishmentofsedimentarylayer’sisochronousstratigraphicframeworkisthebasestopredictreservoirsofasedimentarylayerusingstratalslice.Butitisnoteasytodoso.Becauseseismicresolutionattheintervalofinterestinthisstudyisabout15m,buttheaveragethicknessofasedimentarylayerisonlyabout3m,sedimentarylayer’sinterfacecannotbeinterpretedbyseismicdata.Tosolvethisproblem,thefollowingmeasureswereapplied:firstly,calibrateandinterprettheseismickeyreflectionhorizonsimmediatelyaboveandbelowthetargetsedimentarylayertogetthetwocorrespondingisochronousinterfaces;secondly,establishtheisochronousstratigraphicframeworkofthesedimentarylayerbythemethodofmodelingundertheconstraintsofthetwointerpretedinterfacesbythefirststep.Basedonthecontinuousandstablesedimentarycharacteristicsoftheobjectiveinterval,modelingmethodofparalleltotopandbottomisadoptedtogetthesedimentarylayerisochronousstratigraphicframeworkintimedomain.SeismicattributeselectionTherearehundredsofseismicattributesatpresent,andeachattributehasitsspecificgeologicalandgeophysicalmeanings.Attributesselectionisthekeytoeffectivereservoirprediction.Underthereservoirconditionofthethinsand-shaleinterbedded,thecorrelationbetweenseismicamplitudeandthinlayerthicknessleadstotheresultthatamplitudepropertiesarethemosteffectiveseismicattributesinpredictingthinbed.Samplingvalueofseismicdataisusedinthisstudytopredictreservoirdistributionforasedimentarylayer,i.e.,thesedimentarylayer’sisochronousstratigraphicframeworkintimedomainisusedtosampletheoriginalseismicdata,andthesamplingresultisthereservoirpredictionresultofthesedimentarylayer.Well-to-seismicintegrationreservoircharacterizationUnderwaterdistributarynarrowchannelsandbodiesareeffectivelycharacterizedbyfollowingseismictrendlaterallyandcontrolledbywellvertically.Restrictedbyseismiclimitedverticalresolution,thereservoirlateraldistributiontrendsofasedimentarylayerpredictedbyastratalslicearenormallyacomprehensivereflectionofthelayeranditsadjacentsedimentarylayers,unabletomeetthedemandofdevelopment.Comparedwithseismic,wellloggingdatahasobviousadvantageonverticalresolution,anditcanplayanimportantroleinjudginglayerattributionsofthesandbodiespredictedbyastratalslice.Thefollowsarethemeasures.Firstly,makestratalslicesoftheobjectivesedimentarylayeranditstopandbottomneighbors.Preliminarydeterminethereservoirs’depositionalevolutionsequenceandtheirgeneralbelongingsbyreferringtocorrespondingsedimentarylayers’thicknessmadebywellloggingdata.Secondly,basedontheanalysisinthefirststep,takingadvantageofloggingdataonverticalresolution,realizereservoircharacterizationofthedestinationsedimentarylayer.Firstofall,verifythesandbodiesofthesedimentarylayerpredictedbythestratalslicewithwelldata,andcharac
展开阅读全文
  石油文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
0条评论

还可以输入200字符

暂无评论,赶快抢占沙发吧。

关于本文
本文标题:3D地震技术在萨北高台子油层窄小河道砂体剩余油挖潜中的应用_齐金成
链接地址:http://www.oilwenku.com/p-70527.html
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服客服 - 联系我们
copyright@ 2016-2020 石油文库网站版权所有
经营许可证编号:川B2-20120048,ICP备案号:蜀ICP备11026253号-10号
收起
展开