• / 6
  • 下载费用:5 下载币  

高凝油油藏剩余油分布规律研究_喻鹏

关 键 词:
油油 剩余 分布 规律 研究 喻鹏
资源描述:
收稿日期:20151117;改回日期:20160106基金项目:国家科技重大专项“大型油气田及煤层气开发”之“复杂油藏剩余油分布预测”(2011ZX05009-003-03);中国石油天然气股份有限公司重大科技项目“沈84-安12块高凝油油藏提高采收率研究”(QW08037005-3)作者简介:喻鹏(1987-),男,讲师,2008年毕业于黄山学院数学与应用数学专业,2014年毕业于中国地质大学(武汉)石油与天然气工程专业,获博士学位,现从事油气田开发方面的教学和科研工作。DOI:10.3969/j.issn.1006-6535.2016.02.019高凝油油藏剩余油分布规律研究喻鹏,卢宗盛(中国地质大学,湖北武汉430074)摘要:针对常规地质统计技术及网格粗化近似技术在油藏剩余油饱和度求取过程中存在较大误差的问题,优选性能稳、算速快以及无网格定向效应的流线数值模拟方法,利用水驱开发油藏三维流线模型研究工区流线分布与剩余油配置关系。由研究结果可知,流线推进特征时间同层系调整时间吻合,小层剩余油分布与水线推进规律匹配,井组剩余油分布同沉积、断层以及温度等多因素协同作用相关。为此,建议进一步完善工区注采井网系统,并考虑在局部井组采用针对性的热水、蒸汽驱替,克服原油温敏效应,以提高采收率。通过研究,明确出油及来水方向,找到当前注采流线未能波及的剩余油富集潜力区,为下一步调整井网挖掘剩余油指明了方向。关键词:流线模拟;配置关系;数值仿真;剩余油分布;流线分布;高凝油;静观2块中图分类号:TE319文献标识码:A文章编号:1006-6535(2016)02-0081-040引言高凝油油藏作为诸多油藏类型中较为独特的一类,具有高凝固点、高含蜡、高析蜡温度的“三高”特性,同时原油物性对温度因子极其敏感,故研究其水驱过程的同时,还应考虑原油自身的性质[1-5]。目前,大部分常规水驱开发高凝油油藏均存有温度敏感导致的渗流场紊乱以及剩余油规律认识不清的情况,而此次的研究区块———静观2块也是静安堡复式油气聚集区带中段的一个主力高凝油断块,原油含蜡量为30.0%~45.0%,平均为35.0%,凝固点为40~50℃,含硫量小于0.1%。根据旋回特点及岩、电特性,将油藏纵向划为12个油层组,40个砂岩组,93个小层。油藏自投产以来,共经历5次重大调整,开发层系及井网的调整使得油水关系变得更加复杂,剩余油分布规律差,大分层量导致粗化模型的网格节点增多,给仿真计算过程带来了较大阻力。由于常规地质统计技术及网格粗化近似技术在油藏剩余油饱和度求取过程中可能存在较大误差,尤其针对该类多节点、大计算量的数据体,流线模拟器较传统模拟器具有性能稳、算速快以及无网格定向效应优势[6-13],故优选流线模拟手段进行工区注采流线分布与剩余油的配置关系研究,旨在明确出油及来水方向,明确区块及井网剩余油分布情况,为油田下一步开发调整提供一定的指导。1流线模型的数学模型充分考虑高凝油油藏独特的开发特征,结合实验测试结果可知,常规水驱进程中,蜡晶、沥青的析出及毛管作用使得渗流体系阻力剧增,故耦合流线-黑油模型时,将流体渗流机理一并考虑在内,同时给出流线模型数学模型的假设:油藏流体渗流遵循达西规律;渗流进程温度恒定;岩石及流体皆不可压缩;气相对驱替进程干扰权重偏小,对其忽略。引入毛管及重力项的油水两相流线法渗流数学模型[14-16]:{[ρoKKro(po-ρogD)]/μo}+qo=[(ρoso)/t](1){[ρwKKrw(pw-ρwgD)]/μw}+qw=[(ρwsw)/t](2)82特种油气藏第23卷式中:ρo、ρw分别为油、水密度,kg/m3;K为储层绝对渗透率,10-3μm2;Kro、Krw分别为油相、水相相对渗透率;μo、μw分别为油相、水相黏度,mPa·s;D为与重力加速度方向一致并按某一基准面的测深,m;qo、qw分别为油、水相单位体积、时间内岩石质量流量,kg/(m3·s)。2模型的建立2.1物性及动态参数设置结合拟合精度及实际生产需求,在精细地质建模基础上,选取52×27×93=130572的模型格架(网格步长为50m),数据准备如下。(1)模型基本参数及其初始化。根据物性表征模型及工区地质信息,运用端点标定、初始含水调用结合法平衡初始场,配置压力参数,孔渗参数直接对接调用,压缩系数为6.872×10-4MPa-1。(2)实际地质信息汇总。清绘工区储层及渗流特征的图件(如构造、砂厚等),同时建立以井点为源的模型信息库。(3)流体特征参数。结合高压物性(含原油、地层水)资料成果,架构起特征参数模拟模型。(4)渗流特征参数。包含毛管及相渗数据,进而结合生产动态,在计算模拟进程中微调拟合相渗。(5)动态参数预处理。前处理生产数据时,结合报错调整非法步长,完善压力、射孔。2.2流线模拟参数拟合调节合理的参数设置可将模拟进程中的不收敛及平衡误差故障降低,故结合经验及报错等对若干关键字进行调整。设置制约输出结果,干预饱和度和压力调节,交互式控制误差及压频,反复调整增加默认平衡误差,设置最大牛顿迭代次数,保证了模型计算进程的高效性。2.3流线模型历史拟合拟合阶段设置定油生产,完成产油量拟合,同时以定压边界和定液注入井的方法确保流线计算的稳定性。拟合步骤:①区块拟合。计算过程结合非平衡法稳定含水的同时,给定压—深关系模拟压力系统,储量自然拟合,模拟石油地质储量为724.58×104t,同工区实际误差为1.60%,拟合效果理想。同时,进行含水及产液的拟合,综合含水拟合状况较好,见水时间与产液的拟合效果也较好;②结合地质资料反复微调相渗、NTG及压力等不确定参数,使单井最终拟合率增至83.10%,达到拟合精度。3剩余油分布规律3.1油藏流线分布与剩余油配置关系静观2块投入开发至今,共历经5次重大调整,开发层系以及井网密度等变化使得模拟驱替进程当中的流线特征变化明显。如1990至1991年第2次部署期间,为缓解油藏层间矛盾,以原二层系为基础,将下层系进一步细分成2个开发层系,加密井网。从部署后期流线特征上看(图1),下层系水线推进明显增强,主力片区扫油效率提高。图1静观2块不同开发部署期水驱注采流线分布第2期喻鹏等:高凝油油藏剩余油分布规律研究833.2小层流线分布与剩余油配置关系结合水淹等资料,随机选取流线模型小层模拟结果,以检验剩余油与流线的配置关系。高含水层中,若干区域未贯穿流线或密集程度偏低,预测含水饱和度与水淹情况匹配度较高,印证了流线模型的合理性。结合井史资料分析,主力井区内,由于井网射孔不完善,若干层非正常剩余油富集,使得目的层进液不足。工区东北高部原油富集,为断块构造使水驱流线抬升范围变窄造成,南部和西北片的富集油则由于断层遮挡、干扰了扫油率造成。3.3井组流线分布与剩余油配置关系工区各井组和剩余油有不同的配置关系和分布规律,叠加所有关系即构成整个注采系统和剩余油的配置关系。以上述模拟层为例,观察各井组同剩余油的分布关系。0017井注水流线呈倾向性聚簇状偏南西(图2)。从构造上看,距离该井北东向不远存在断块的3号断层,这种特殊的聚簇特征主要受控于断层封隔作用,也正是由于该作用,使得此井组附近屋檐处有一定量剩余油赋存。图20017井组水驱流线及对应剩余油分布由图3可见,0002—0031井均分布于水下河道,且井距较小,注水驱替构成渗流优势通道,水驱过程中,优势流线簇构成椭圆状水线,故井区北东部剩余油富集程度明显高于南西部。图30002井组水驱流线及其对应剩余油分布0022井是工区储层伤害实验选井,其注水域内储层冷伤害严重,冷水驱替使原油敏感,温度降低,析出蜡晶,将孔道堵塞,干扰水驱进程。从模拟结果看(图4),0022井水驱流线前缘以0.07m/d的速度推进,但仍未在0012井突破,极高的温度敏感性致使驱油速度受阻,井区周边剩余油零星富集,尤其在未波及井周围,剩余油存在连片富集态。通过以上分析,将工区油藏仿真流线与剩余油的配置情况归纳为五大类:第1类为流线密集度较高的低剩余油饱和度分布;第2类为井网不完善造成若干小层的剩余油富集;第3类为构造条件差流线难以波及的区域剩余油富集;第4类为相控条件下层中矛盾突出造成的局部剩余油富集;第5类为高凝油冷采过程中温敏效应导致流线波及受阻的84特种油气藏第23卷剩余油富集。结合工区流线分布及与剩余油的配置关系,可以后续挖掘潜剩余油潜力区,以此可以提图40022井组水驱流线及对应剩余油分布高油藏的最终采收率。4结论(1)结合流线数值模拟技术手段,研究分析高凝油油藏注采流线分布与剩余油的配置关系,明确出油及来水方向,找到当前注采流线未能波及的剩余油富集潜力区,为下一步调整现有注采井网、挖掘剩余油指明方向。(2)模型流线推进变化特征时间同层系调整时间吻合,随机小层剩余油分布及水线推进规律匹配,总体拟合度高,最终流线模型合理。通过井组流线分布与剩余油配置关系分析,明确了剩余油分布与沉积、断层以及温度等多因素协同作用的关系,可进一步完善注采井网。参考文献:[1]姜彬,丘凌,刘向东,等.固相沉积模型在高凝油藏注水开发中的应用[J].石油学报,2015,36(1):101-105.[2]阳晓燕,杨胜来,吴向红,等.高凝油油藏注水开采温度场变化规律[J].特种油气藏,2011,18(4):87-89.[3]谢文彦,李晓光,陈振岩,等.辽河油区稠油及高凝油勘探开发技术综述[J].石油学报,2007,28(4):145-150.[4]邓惠,杨胜来,康铭辉,等.高凝油常规冷采时井筒温度分布分析[J].特种油气藏,2008,15(5):91-93.[5]聂向荣,杨胜来.高凝油油藏冷伤害特征数值模拟[J].石油钻探技术,2014,42(1):100-104.[6]郑强,戴雄军,张有印,等.中高含水期边底水砂岩油藏开采政策研究———以哈国Aryskum油田M-II层北区为例[J].新疆石油天然气,2013,9(3):35-38.[7]侯玉培.整装油藏流场重整提高采收率的数值模拟研究[D].青岛:中国石油大学,2011.[8]朱丽红.特高含水期厚油层剩余油综合描述及分布特征[J].大庆石油地质与开发,2013,32(6):58-62.[9]黄有泉,周志军,刘志军,等.葡南三断块特高含水期油藏数值模拟精度提高方法[J].油气地质与采收率,2014,21(5):65-68.[10]陈晓彬,石为为.高台子油层河口坝砂体精细识别及剩余油分析[J].大庆石油地质与开发,2014,33(4):66-69.[11]张世明,吴晓东,李坤,等.基于吸水剖面资料的油藏层间平均剩余油饱和度计算方法[J].油气地质与采收率,2014,21(5):98-100.[12]吴军来,刘月田,杨海宁.基于3D流线模拟的水驱油藏动态评价新方法[J].西安石油大学学报(自然科学版),2011,26(2):43-47.[13]翟亮.基于流线的示踪剂技术研究薄层底水油藏开发规律[J].特种油气藏,2011,18(1):79-82.[14]刘慧卿.油藏数值模拟方法专题[M].东营:石油大学出版社,2001:20-25.[15]孙致学,楚鹏,张青菇,等.微观驱油实验数值模拟方法[J].大庆石油地质与开发,2015,34(3):124-128.[16]吕琦.基于流线的油藏数值模拟研究[D].青岛:中国石油大学,2009.编辑姜岭resultfromthecarbonatecementationinthelatemiddle-diagenesisstageB.Thestudycouldprovideabasisforthegenesisofdensificationandheter-ogeneityinKepingtagereservoirs.Keywords:reservoirdensification;diagenesis;poreevolution;dissolution;Tazhong;KepingtageFormationRiskAssessmentandAnalysisofOilfieldDevelopmentPlanningLiBin,BiYongbin,GaoGuangliang,YuanLixin,LiuZhenlin(PetroChinaJidongOilfieldCompany,Tangshan,Hebei063004,China)Abstract:Theoilfielddevelopmentrisksshouldbecomprehensivelyandsystematicallyassessedinvariousdevelopmentprograms.Theriskassessmentcannotonlyimprovedevelopmentprogramsorplanningbutalsodrawtheattentionofdevelopmentmanagersandoperatorsonrisks.Theprimarygoalistoavoidrisksandadoptappropriateprotectivemeasurestoimproveoilfielddevelopment,reduceeconomiclossesandenhancesocialbenefits,anditcanalsohighlighttheeffectivenessofprogramorplanningimplementation.Thekeyofriskassessmentisriskidentification,designofassessmentinde-xes,determinationofindexweights,assessmentmethodselection,riskavoidanceanddesignofprotectionmeasures.Theriskassessmentprinciples,assessmentprocesses,16assessmentindexes,multi-methodassessmentcombinationassessment,riskwarning,importantnoticesandothersarepro-posedinthisstudy,whichisanattempttotheriskassessmentofoilfielddevelopmentprograminparticulartotheriskassessmentofoilfielddevelop-mentplanning.Weighting,idealdistance,greycorrelationmethod,TOPSISandothermethodsareappliedincombinationintheriskassessmentin-stance,whichprovesthereliability,credibility,necessityandpracticabilityofriskassessment.Italsopointedthatthelackofunderstandingandatten-tiontoriskassessmentforalong-termperiodleadstoextremeshortageofriskassessmentinformation.Itisrecommendedthatriskassessmentinforma-tionshouldbesystematicallyandcompletelycollectedincaseofnecessity,especiallytheenvironmentalprotectionandsocialriskinformation.Keywords:riskassessment;riskidentification;riskwarning;uncertainty;comprehensiveevaluation;oilfielddevelopment;JOilfieldNumericalSimulationofReservoirTime-VariationBasedonSurfaceFluxJiangRuizhong,QiaoXin,TengWenchao,XuPandeng,LiuZiyi(ChinaUniversityofPetroleum,Qingdao,Shandong266580,China)Abstract:Long-periodwaterfloodingleadstovariationofreservoirpropertiesduringoilfieldwaterfloodingdevelopment,whichdirectlyinfluencewa-terfloodingperformanceandremainingoildistribution.Thecontinuousvariationofreservoirphysicalpropertieswithsurfacefluxisquantitativelychar-acterizedbylaboratoryexperimentaltest,conventionalblack-oilmodelrefinement,softwaredevelopment,etc.Anumericalsimulationtechnologyisdevelopedtodescribetime-variationofreservoirproperties.Conceptualmodelisestablishedandsimulatedbyusingthisnewreservoirsimulationsoft-ware,andthesimulationresultdemonstratesthatthemain-streamlinezoneismoreseverelywateredoutandreservoirrecoverydegreeisincreasedby6.4%afterconsideringthetime-variationofreservoirproperties.Thesimulationisbasicallyindependentongridsizeandtheerrorsofreservoirre-coverydegreeandwater-cutbetweentwoconceptualmodelswithdifferentgridsizesareonly0.079%and0.157%respectively.Thecontinuitychar-acterization,directioncharacterizationandsimulationstabilityofavailablesimulationmethodsaresignificantlyimprovedbythisnewreservoirsimula-tiontechnology,whichisfavorabletotheforecastsofreservoirwaterfloodingperformanceandremainingoildistribution.Keywords:waterflooding;time-variationofphysicalproperties;numericalsimulation;surfaceflux;remainingoilFormationHeatLossCalculationinSteamFloodingofSuper-HeavyOilReservoirDuDianfa1,FuJingang1,ZhangJing1,BaZhongchen2,ZhengYang1(1.ChinaUniversityofPetroleum,Qingdao,Shandong266580,China;2.PetroChinaXinjiangOilfieldCompany,Karamay,Xinjiang834000,China)Abstract:Gravityoverridinguniversallygeneratesinthesteamfloodingofsuper-heavyoilreservoir,whichisnotconsideredinthecurrentformationheatlosscalculationmethodswithpiston-likedisplacementtheory.Theequationsofsteamfloodingfrontandsteamchambervolumearededucedbyconsideringtheeffectsofgravityoverridingandpseudomobilityratioontheshapeofsteamfloodingfront.Theformationheatlosscalculationmethodconsideringgravityoverridingisgainedbyusingsteamchamberevolution,heattransferandinstantthermalbalancetheories.Researchdemonstratesthattheheatlossrateisgreatlyaffectedbygravityoverridingandheatlossratedecreaseswiththeincreaseofshapefactor.Theheatlossrateincreasesrapidlyintheearlystageandremainsflatinthelatestageduringsteamflooding.Theformationheatlossratedecreaseswiththeincreaseofsteamin-jectionrate,reservoirthicknessanddecreaseofpseudomobilityratioanddecreaseofdifferencebetweenradialandbottomholesteaminjectionrates.Researchcouldprovideareferenceforoptimizationofinjection-productionallocationduringsteamfloodingofsuper-heavyoilreservoir.Keywords:Superheavyoil;steumflooding;gravityoverride;heavylossrate;gasinjectionveloaity;karamayoilfieldFracturedHorizontalWellProductivityForecastandAnalysisinLow-PermeabilityTightGasReservoirGuJianwei1,YuXiuling1,TianTonghui2,XuYaodong2(1.ChinaUniversityofPetroleum,Qingdao,Shandong266580,China;2.SinopecShengliOilfieldCompany,Dongying,Shandong257015,China)Abstract:Inordertoaccuratelyforecasttheproductivityoffracturedhorizontalwellinlow-permeabilitytightgasreservoir,conformaltransformationisusedtodeduceaseepageequationconsideringtheeffectsofpressure-sensitiveandstartingpressuregradient.Thepressuredropfunctionisgainedbyin-tegratingtheseepageequationandsuperpositionprincipleisusedtoestablishaproductivityforecastmodeloffracturedhorizontalwell.Researchdemon-stratesthattherelativeerrorbetweenforecastedproductivityandproduction-testproductivityis8.26%andtheproductivityforecastmodelisreliableandaccurate.Productivityismoredependentonpressure-sensitiveeffectratherthanstartingpressuregradient.Theproductivityincreasesslowlywhenthenumberoffracturesexceeds3.Increasingfracturelengthandfracturingspacingarefavorabletoincreaseproductivity.Thisproductivityforecastmodelcouldprovideareferencefortheproductivityforecastandfracturingoptimizationofhorizontalwellsinlow-permeabilitytightgasreservoir.Keywords:low-permeabilitytightgasreservoir;fracturedhorizontalwell;pressure-sensitiveeffect;startingpressuregradient;productivityanaly-sis;ShengliOilfieldResidualOilDistributioninHighPour-PointReservoirYuPeng,LuZongsheng(ChinaUniversityofGeosciences,Wuhan,Hubei430074,China)Abstract:Conventionalgeologystatisticsandgridupscalingtechnologiesusuallyresultinrelativelyagreaterrorintheremainingoilsaturationsimula-tion.Streamlinenumericalsimulationwithstableperformance,highefficiencyandnogridorientationeffectisusedtotakeadvantageofwaterflooding3Dstreamlinesimulationtogainthestreamlineandremainingoildistributions.Researchdemonstratesthatthecharacteristictimeofstreamlineadvan-cingisconsistentwiththetimeofstrataseriesadjustment,remainingoildistributionofsublayersagreeswithwaterstreamlineadvancing,andwellgroupremainingoildistributionisdependentondeposition,fault,temperature,etc.Itisrecommendedtofurtherimprovetheinjection-productionwellnet-workandimplementspecifichot-waterflooding,streamfloodinginlocalwellgroupstoovercomeoilthermo-sensitivityandenhanceoilrecovery.Theremainingoildistributionandwaterinflowdirectionsareidentified,whichcouldprovideguidanceforfurtherwellnetworkadjustmentandenhancingoilrecovery.Keywords:streamlinesimulation;configuration;numericalsimulation;remainingoildistribution;streamlinedistribution;highpour-pointoil;BlockJingguan2SensitivityAnalysisofVolume-FracturedHorizontalWellProductivityinTightReservoirLiuXiong1,WangLei2,WangFang1,DengXiaomei3,PengChengmin3(1.PetroChinaResearchInstituteofPetroleumExplorationandDevelopment,Beijing100083,China;2.SinopecExploration&ProductionResearchInstitute,Beijing100083,China;3.PetroChinaHuabeiOilfieldCompany,Renqiu,Hebei062552,China)Abstract:MirrorinversionandGreenFunctionareusedtoestablishanon-steadysemi-analyticalmodeltoforecasttheproductivityofvolume-fracturedhorizontalwellintightreservoir,andthemutualinterferencebetweenfracturesisalsoconsideredinthismodel.TypicalWarren-Rootdual-mediummodelisusedtomodelthefracturenetworkpropagation,distributionandfluidflowinstimulatedreservoirvolume.Thesensitivityofpro-ductivityisanalyzedbasedonthemodelpracticalityverificationthroughcasematching.Researchdemonstratesthattheproductivityintheearly-mid-dlestageincreaseswiththeincreaseoffracturehalf-length,andthiscorrelationisalsodependentontherelativemagnitudebetweenfracturehalf-lengthandclosedboundarysize.Theproductivityincreasinglydependsontheratiobetweenfracturelengthandreservoirwidthwiththeincreaseofthisratio.Theproductivityincreaseswiththeincreaseoffracturenumber.Theinitialproductionincreaseswiththeincreaseofstorageratio.Theproductiv-ityisonlydependentoncrossflowcoefficientwithincrossflowstage.Theproductioninthelatestageincreaseswiththeincreaseoffracturespacing.Inaddition,optimizationoffracturehalf-lengthandspacingisfavorabletoincreaseproductivity.Keywords:volume-fracturing;horizontalwell;productivityevaluation;tightreservoir;dual-medium;non-steadymodelFAST-SAGDApplicationandItsInfluencingFactorsinSuperHeavyOilReservoirsWangJianjun1,2,JuBinshan1,2,ChenChanghong1,2,HouGuoru3(1.ChinaUniversityofGeosciences,Beijing100083,China;2.BeijingKeyLaboratoryofUnconventionalNaturalGasGeologyEvaluationandDevelopmentEngineering,Beijing100083,China;3.PetroChinaLiaoheOilfieldCompany,Panjin,Liaoning124010,China)Abstract:HeavyoilthermalrecoverynumericalsimulationisusedtocomparetheperformancesofFAST-SAGDandconventionaldual-horizontal-wellSAGDinthesuperheavyoilreservoirsofLiaoheOilfield.ThekeyfactorsrelatedtoFAST-SAGDperformanceareanalyzedtoimproveSAGDperformance.ResultillustratesthatthesteamchamberofFAST-SAGDexpandssignificantlyfasterthanthatofconventionalSAGD,therecoveryfac-torisincreasedby2.5%,thecumulativeoil-steamratioisincreasedby0.039m3/m3andtheproductionperiodisreducedby46.6%.RecoveryfactorandthermalefficiencyareusedtogaintheoptimumparametersofFAST-SAGD:theverticaldistancebetweentheaddingwellandproductionwellofSAGDwellgroupis6m,thestart-upperiodis12months,thehuff-puffcyclenumberis2,thesteaminjectingpressureis10MPa,thesteaminjectingrateis800m3/dandthesteaminjectingrateofinjectionwellinSAGDwellgroupis200m3/d.ThisresearchcouldprovidesometheoreticalguidanceforfieldapplicationofFAST-SAGDtechnology.Keywords:FAST-SAGD;addingwell;sensitivefactor;recoveryfactor;cumulativeoil-steamratioRemaining-OilD
展开阅读全文
  石油文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
0条评论

还可以输入200字符

暂无评论,赶快抢占沙发吧。

关于本文
本文标题:高凝油油藏剩余油分布规律研究_喻鹏
链接地址:http://www.oilwenku.com/p-70450.html
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服客服 - 联系我们
copyright@ 2016-2020 石油文库网站版权所有
经营许可证编号:川B2-20120048,ICP备案号:蜀ICP备11026253号-10号
收起
展开