• / 11
  • 下载费用:5 下载币  

1-s2.0-S0045793014001212-main

关 键 词:
s2 S0045793014001212 main
资源描述:
District,Technology,Receivedinrevisedform28February2014Accepted20March2014Availableonline13April2014reservoirsduringCO2water-alternating-gas(WAG)floodingbyrunningcompositionalnumericalsimu-sionandinjection,CO2EORprojectsmaynotbeprofitablewithouteconomicincentivesfromthegovernment.Ghomianetal.[9]establishedtheamountsandtypesofeconomicincentivesfordif-ferentreservoirtypes.Theyfoundthatsandstonereservoirshadhigherprobabilityofneedforeconomicincentivesthancarbonatereservoirs.UsingthemethodologyofNPV,JahangiriandZhang[10][12]definedoilrecoverymosteffectivewhichcouldoptimizeoilrecoveryandsimultaneousCO2sequestration.etal.[13]developedahybridmethodthatintegratesorthogonalarrayandTabutechniqueintoageneticalgorithm.Whenconduct-ingasensitivityanalysisonoilrecoveryandNPV,controllingvari-ableswereselectedincludinginjectionrate,WAGratio,injectiontimeandbottomholepressurefortheproducers.StudiesrevealedthatWAGfloodingrecoversmoreoilthancontinuousinjectionflooding.ThatisbecauseWAGfloodingcanreduceCO2viscousfin-geringandprovidebetterverticalsweepefficiency[14,15].Addi-tionally,thehorizontalwellimpactsCO2floodinggreatlyforthe⇑Correspondingauthor.Tel.:+15733414657.E-mailaddress:weim@mst.edu(M.Wei).Computers&Fluids99(2014)93–103ContentslistsavailableComputerslsevNorthSeahavealsoprovedthegreatpotentialsofbothoilproduc-tionincrementandCO2sequestration[7,8].However,ifthegassourceislocatedfarfromatargetoilreser-voir,consideringthecostofCO2capture,transportation,compres-aWAGmisciblefloodingreservoir.KovscekandCakicianobjectivefunctionthatcombinestheultimatethefractionofreservoirvolumefilledwithCO2.Theinjectionandproductionschemewasdeterminedhttp://dx.doi.org/10.1016/j.compfluid.2014.03.0220045-7930/C2112014ElsevierLtd.Allrightsreserved.andco-ChenCarbondioxidefloodinghasbeenrecognizedasoneofthemosteffectiveoptionsforoilrecoveryenhancementindepletedormatureoilreservoirs[1–3].ThebenefitsofinjectingCO2includetheexpansionofoilvolumeandthereductionofoilviscosity[4,5].CO2isabletodisplacetheresidualoilthatisimmobilizedbywaterfloodingandthereforeimprovethemicroscopicdisplace-mentefficiency[6].TheCO2EORprojectsinWeyburnandthe2NPVaswaterflooding,whilemiscibleCO2floodingismoreprofit-ablethanwaterfloodingevenwithoutanyeconomicincentives.Regardingtheoptimizationofoperationalscheme,anumberofstudieshavebeenconducted.Yangetal.[11]developedaninte-gratedmodeltooptimizetheproduction-injectionoperationsys-tems(PIOS).TakingtheNPVasanobjectivefunction,theoptimumproductionandinjectionparameterswereachievedinKeywords:CO2WAGfloodingEnhancedoilrecoveryOrthogonalexperimentaldesignOperationalschemeNetPresentValueTechnicalandeconomicanalyses1.Introductionlator.Themethodusedistheorthogonalexperimentaldesignmethodtooptimizeoperationparameters,includingCO2slugsize,ratioofCO2slugsizetowaterslugsize(WAGratio),CO2injectionrate,andvoi-dagereplacementratio.TheNetPresentValue(NPV)wasusedasanobjectivefunctionforeconomicanalysis.Various3-DheterogeneousreservoirmodelswerebuilttoinvestigatetheimpactofreservoirtypesanddevelopmentparametersonCO2floodingefficiencyandstoragecapacity.Theresultsindicatethatascomparedtoinvertednine-spotpatternandinvertedseven-spotpattern,five-spotpatternismoresuitableforCO2WAGflooding.TheearlierwaterinjectionisswitchedtoCO2,themorebenefitcanbeobtained.ComparedwithCO2injectioncostandtaxcreditpertonofCO2stored,oilpriceisconsideredasthemostinfluentialeconomicparameteronCO2WAGflooding.C2112014ElsevierLtd.Allrightsreserved.determinedthataminimumof$40/tonofcarbontaxcreditisrequiredforimmiscibleCOfloodingsoastoobtainthesameArticlehistory:Received10December2012Theobjectiveofthisworkistoinvestigatetheeffectofoperationalschemes,reservoirtypesanddevel-opmentparametersonboththeamountofincrementaloilproducedandCO2storedinhighwatercutoilSensitivityanalysisofwater-alternating-COrecoveryinhighwatercutoilreservoirsZhaojieSonga,b,c,ZhipingLia,c,MingzhenWeib,⇑,FengpengaSchoolofEnergyResources,ChinaUniversityofGeosciences,29#XueyuanRoad,HaidianbDepartmentofGeologicalSciencesandEngineering,MissouriUniversityofScienceandcBeijingKeyLaboratoryofUnconventionalNaturalGasGeologicalEvaluationandDevelopmentarticleinfoabstractjournalhomepage:www.e2floodingforenhancedoilLaia,c,BaojunBaib100083Beijing,China1400N.BishopAvenue,Rolla,65409Missouri,UnitedStatesEngineering,29#XueyuanRoad,HaidianDistrict,100083Beijing,ChinaatScienceDirect&Fluidsier.com/locate/compfluid3.175mmwaspackedwithsandof200meshsize.Theporevol-umeoftheslimtubeis255.7cm3.TheslimtubewassaturatedbyreconstitutedoilthatcontainsC1+N2(14.0mol%),CO2+C2-C24C10(27.9mol%)andC11+(58.1mol%).Duringtheexperiments,1.2PVCO2wasinjectedattherateof0.167cm3/minatsixdiffer-entdisplacementpressures.Thecolorchangeandphasebehavioroftheeffluentwereobservedthroughtheinspectionwindow.Theeffluentwasflashedintheseparatorconnectedwithaflowmetertomeasuregasflow.Theoilwascollectedinaconicalflaskandthedensitywasmeasuredusingadensitometer.Thecumula-tiveoilrecoverywasrecordedandtheMMPwasdefinedasthebreakinslopefromtheplotofoilrecoveryagainstdisplacementpressure[29].AsFig.3depicts,theMMPwasdeterminedtobe322.8bars.Theinitialformationpressureis272.1barsthatarelowerthantheMMP,whichmeansCO2immiscibleflooding.UsingthePVTimoduleinEclipsesoftware,thepseudo-componentsofcrudeoilwereobtainedasshowninTable2.Thelightcomponents(C2C24C6)justaccountfor10.1mol%,andalargeamountofheavycomponentsleadstoahighMMPbetweenreservoiroilandCO2.EclipseCompositionalSimulatorwasused.Initially,thereser-voirwaswaterflooded;thenRESTARTfunctionwasusedtocon-ductWAGflooding.DuringWAGflooding,masstransferbetweenCO2andoilwasautomaticallyconsideredinthecompositionalsimulator.3.Methodologies3.1.DeterminationofoperationalschemeFig.1.Typicalrelativepermeabilitycurvesforthetargetoilreservoir.(a)Relativepermeabilitycurvesforwater–oilsystem.(b)Relativepermeabilitycurvesforgas–liquidsystem.&Fluidsreasonthatthedisplacementprovidesbettersweepefficiencybasedonbothreservoirsimulationsandlaboratorystudies[16–18].DespitethepotentialsofCO2EOR,thistechnologyisnotsuit-ableforalltypesofhydrocarbonreservoirs[19,20].Basedonbothfieldresultsandoilrecoverymechanismstudy,Taberetal.[21]proposedthescreeningcriteriaforCO2miscibleandimmiscibleflooding,respectively.ShawandBachu[22]presentedamethodforthescreeningandrankingofoilreservoirssuitableforCO2EOR.Oilgravity,reservoirtemperatureandpressure,minimummiscibilitypressureandremainingoilsaturationwereselectedasvariables.However,mostofstudiesonCO2floodingdescribedabovehavebeenconductedonundevelopedoilreservoirs,andveryfewresultsfromhighwatercutoilreservoirsareseenintheliterature.Themainobjectiveofthisstudyistoinvestigatetheeffectofoperationalschemes,reservoirtypesanddevelopmentparametersonWAGfloodinginhighwatercutoilreservoirsbyrunningcom-positionalsimulations.Byapplyingorthogonalexperimentaldesign,themosteffectiveoperationalschemewasdeterminedwhichcouldmaximizetheincrementaloilproducedbyWAGflooding.Afterwards,variousgeologicalmodelswereconstructedbyemployingdifferentreservoirparametersanddevelopmentparameters.Atechnicalanalysisoffivereservoirparametersandtwodevelopmentparameterswasconducted.TheNPVmodelwasbuiltforeconomicanalysis.Theeffectofoilprice,CO2injec-tioncostandtaxcreditontheNPVwasinvestigatedinthestudy.2.DescriptionofthebasereservoirmodelThisstudywasconductedbasedonareservoironGuan104faultblockinDagangOilfieldinChina[23–28].Fortheparticularinterestedareaof3.5km2,thereservoirdepthisfrom2,650mto2,750m;theformationnetthicknessvariesfrom9.7mto41.4m;theaveragehorizontalpermeabilityvariesfrom254.7mdto425.7md;therangeofporosityisfrom18%to22%andtheaverageporosityis19.04%.Thepermeabilityvariationcoefficientvariesfrom0.45to0.8.Thesandbodyrhythmsincludenormal,reverse,compoundnormalandcompoundreverse.Five-spotpatternswereinitiallyappliedandarestillusedinthisreser-voir.Thisisawater-wetreservoir.Therelativepermeabilityendpointsarethecriticalwatersaturationof0.478,theresidualoilsat-urationof0.227forwater–oilsystem,theconnategassaturationof0,andthemaximumgassaturationof0.522forgas–liquidsystem.Therelativepermeabilitycurvesforwater–oilsystemweredepictedinFig.1(a),whiletherelativepermeabilitycurvesforgas–liquidsystemwereshowninFig.1(b).ThesamesetofrelativepermeabilitycurveswasutilizedinthesimulationsduringwaterfloodingandCO2WAGflooding.InordertoinvestigatetheimpactofoperationalschemesonCO2flooding,abasereservoirmodelwithimpermeableboundarywasbuiltbasedontherangeofmainparametersofthatparticularreservoir.Thebasereservoirmodelis925m,925mand10minthex,yandzdimensions,respectively.Itconsistsofninefive-spotpatternswithawellspacing(i.e.,thedistancebetweentwoadja-centproducers)of300m;thelocationsofthe9injectorsand16producerswereshowninFig.2.Thesewellsperforatedinallfourlayersoftheformation.Thesandbodyisnormalrhythmic,whichmeanstheformationpermeabilityincreasesdownward.Thebasereservoiriswater-wet,andtheinitialoilsaturationis0.522.OtherparametersinthebasereservoirmodelweresummarizedinTable1.Slim-tubeexperimentswereconductedtodeterminethemini-94Z.Songetal./Computersmummiscibilitypressure(MMP)betweenthereservoiroilandCO2.Theexperimentswereconductedunderthetemperatureof108C176C.Aslimtubewithalengthof18mandaninnerradiusof99(2014)93–103InCO2WAGflooding,theCO2slugsize,WAGratio,CO2injec-tionrateandvoidagereplacementratioimpactWAGfloodingsig-nificantly[13,30].AbigCO2slugsizeresultsinearlygas&Fluids99(2014)93–10395Z.Songetal./Computersbreakthroughandhighproducinggas-oilratio.WhileasmallCO2slugsizeincreasesthecyclesofWAGandmakeson-siteoperationscomplex.AnappropriateWAGratioisconducivetothecontrolofwatercutandtheimprovementofsweepefficiency.AhighCO2injectionratenotonlycauseshighproducinggas-oilratiobutalsoFig.2.Basereservoirmodelwithwell-spacingpatternsTable1Basicparametersinthebasereservoirmodel.ParameterValueParameterValueReservoirdepth(m)2700Averagehorizontalpermeability(md)300Netthickness(m)10Permeabilityvariationcoefficient0.5Porosity0.1904Ratioofverticaltohorizontalpermeability0.1Fig.3.Cumulativeoilrecoveryatdifferentdisplacementpressuresintheslim-tubeexperiments.Table2Pseudo-componentsdescriptionofcrudeoil.ComponentMolefractionMolecularweight(kg/mole)Tc(K)Pc(bar)CO20.000460.044010304.272.9CH4+N20.140120.016447188.445.6C2H60.015240.030070305.448.2C3–C40.035000.052477401.139.6C5–C60.050620.078719489.631.7C7–C100.177430.114980589.427.2C11+0.581130.330300847.210.2increasestherequirementsofCO2compressionandinjectiondevices.Moreover,thebottomholeinjectionpressuremayexceedtheformationfracturingpressureathighCO2injectionrates.MeanwhilethelowCO2injectionratenarrowsthemisciblezoneandreducesCO2floodingefficiency.Itisrequiredtoachieveanoptimalinjectionratetomaximizetheoilrecoveryimprovement.AnappropriateincreaseofvoidagereplacementratioisbeneficialinmaintaininginitialformationpressureandpromotingmasstransferbetweenCO2andoil.However,anexcessivevoidagereplacementratioleadstotheinjectionpressurehigherthanfor-mationfracturingpressure.Therefore,optimizationstudywascon-ductedtoachievetheoptimalcombinationofthesefourparameters.Table3showsthefourparametersdiscussedinthestudyandthethreelevelsofuncertaintyconsideredforeachparameter.Ifthecombinationsofallparametersatalllevelsarestudied(i.e.,full-factorialexperiment),34runswillberequired.Orthogonalexperimentaldesignisthemethodthatcanbeusedtoavoidthefull-factorialexperimentimplementationwhenmultipleparame-tersareconsideredatmultiplelevels.AsTable4depicts,onlynineoperationalschemeswererequiredinorthogonalexperimentalandinitialoilsaturationdistribution.design,andalllevelsofallparameterswerewelldistributedintheseschemes.Theorthogonalexperimentaldesignsignificantlydecreasesthenumberofsimulationexecutions,thereforeimprovethecomputationalcost.InordertoevaluateWAGfloodingeffi-ciency,twoevaluatingindicesweredefined:theimprovedrecov-eryfactorandgasreplacingoilratio.TheformerreferstotheincreasedoilrecoveryfactorofWAGfloodingascomparedtothatofwaterflooding,andthelatterreferstotheamountofoilproduc-tionincreasedinm3whenonetonofCO2isstored.TheflowchartoftheresearchprocedurewasprovidedinFig.4.Initially,awaterfloodingsimulationwasperformedwithawaterinjectionrateof70m3/dforeachinjector.Afixedliquidproductionratewassetforeachproducertoachieveavolumetricbalance.Theultimatewaterfloodingrecoveryfactoris43.56%whenallthepro-Table3Operationparametersforoperationalschemestudyandtheirthreelevelsofuncertainty.NO.OperationparameterLow(C01)Median(0)High(1)1CO2slugsize(PV)0.050.100.152WAGratio2:11:11:23CO2injectionrate(Sm3/d)10,00020,00040,0004Voidagereplacementratio1:11:0.951:0.9ducersreachedthewatercutof98%toshutin.Fig.5presentstheinformationfortheprimaryproductionofthebasereservoir.Dur-ingthefirsttwoyearsofwaterflooding,oilproductionratedecreasesfrom611m3/dayto115m3/day,whilewaterproductionincreasesfrom0m3/dayto500m3/day.Attheendoftheprimaryproduction,cumulativeoilproductionis194,653m3,andrecoveryfactorreaches25.1%.Theremainingoilsaturationis0.391.Theaverageformationpressuredeclinesto258.2bars.Thewatercutreaches81.2%,indicatingthereservoirreacheshighwatercutstage.Afterthetwoyearsofwaterflooding,WAGfloodingwasimplementedbyapplyingRESTARTfunctionintheEclipseCompo-sitionalSimulator,andnineschemesshowninTable4wereper-formedonthebasereservoirmodel.Theimprovedrecoveryfactorandgasreplacingoilratiowhenalltheproducersreachedtheproducinggas-oilratioof3,000Sm3/m3toshutinweresum-meanvaluesforeachparameter.Themeanvaluesareusedtodeterminewhichlevelisoptimalforeachparameter.ThemostTable4Scenariodesignforoperationalschemestudyandresultsoftwoevaluatingindices.SchemeCO2slugsize(PV)WAGratioCO2injectionrate(Sm3/d)VoidagereplacementratioImprovedrecoveryfactorGasreplacingoilratio(m3/ton)F0010.052:110,0001:10.059530.198F0020.051:120,0001:0.950.083910.349F0030.051:240,0001:0.90.176400.588F0040.102:120,0001:0.90.107900.366F0050.101:140,0001:10.097400.316F0060.101:210,0001:0.950.094120.393F0070.152:140,0001:0.950.091480.306F0080.151:110,0001:0.90.108500.302F0090.151:220,0001:10.098350.286Fig.5.Productionprofilesduringthefirsttwoyearsofwaterfloodinginthebasereservoirmodel.96Z.Songetal./Computers&Fluids99(2014)93–103marizedinTable4.Orthogonalexperimentaldesignisonetypeofdesignsofexper-iments.ApplyingthismethodologyenablesustoobtainthemeanvaluesandrangevaluesofthetwoevaluatingindicesasshowninTable5.Themeanvaluereferstotheaveragevalueoftheevaluat-ingindexofthreeschemesforeachleveloftheparameter.TheFig.4.Flowchartoftherangevalueisthedifferencebetweenthemaximumandminimumresearchprocedure.Fig.6.Effectofvoidagereplacementratio(VRR)onCO2WAGfloodingefficiency.(a)Profilesofformationpressure.(b)Profilesofoilproductionrate.(c)Profilesofproducinggas-oilratio.&Fluidseffectiveschemeisregardedastheonewithfouroptimallevelsoffouroperationparameters.Therangevaluesareusedforrankingthefouroperationparameters.Abiggerrangevalueindicatesthattheparameterismoreinfluential.Forthepurposeofmaximizingtheimprovedrecoveryfactorandgasreplacingoilratio,itwasdeterminedfromTable5thatthemosteffectiveoperationalschemeofWAGfloodingwastheonewithaCO2slugsizeof0.05PV,aWAGratioof1:2,aCO2injectionrateof40,000Sm3/d,andavoidagereplacementratioof1
展开阅读全文
  石油文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
0条评论

还可以输入200字符

暂无评论,赶快抢占沙发吧。

关于本文
本文标题:1-s2.0-S0045793014001212-main
链接地址:http://www.oilwenku.com/p-70393.html

当前资源信息

吾王的呆毛

编号: 20180607204403173216

类型: 共享资源

格式: PDF

大小: 2.07MB

上传时间: 2018-06-08

广告招租-6
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服客服 - 联系我们
copyright@ 2016-2020 石油文库网站版权所有
经营许可证编号:川B2-20120048,ICP备案号:蜀ICP备11026253号-10号
收起
展开