• / 12
  • 下载费用:5 下载币  

1-s2.0-S0920410517305545-main

关 键 词:
s2 S0920410517305545 main
资源描述:
Shishen,ChaoKeywords:TectonicfractureComprehensiverupturerateLowpermeabilitysandstonereservoirBlockShishen100TectonicstressfieldRockscanbeeasilyfracturedandbecomefracturedreservoirsdependingonmanyfactors:lithology,intensediagenesis,latertectonicconditions),charac-fracturesoccuratworld(Florez-Ninosandstonechannelsforhy-fractures,whichofareservoirLi,2009;Jiuetal.,indicatedthatwascommonlyofmagnitude.anddistributionofisextremelyimportantforboththeexplorationandexploitationactivitiesofoilandgas(Aydin,2000;HenkandNemC20cok,2008;Manzocchietal.,2010;Ju*Correspondingauthor.KeyLaboratoryofCoal-basedCO2CaptureandGeologicalStorage,Xuzhou221008,China.E-mailaddress:wju@cumt.edu.cn(W.Ju).ContentslistsavailableatScienceDirectJournalofPetroleumScienceandEngineeringjournalhomepage:www.elsevier.com/locate/petrolhttp://dx.doi.org/10.1016/j.petrol.2017.06.068Received22May2016;Receivedinrevisedform17June2017;Accepted29June2017Availableonline1July20170920-4105/©2017ElsevierB.V.Allrightsreserved.JournalofPetroleumScienceandEngineering156(2017)884–8951.IntroductionThelowpermeabilitysandstonereservoirisanimportantreservoirtypeincontinentalsedimentarybasinsinChina(Guoetal.,2010)withitspermeabilitygenerallylessthan50milliDarcys(Li,1997;ZengandLi,2009),whichisthemajortypeofpetroleumreservoirsintheBlockShishen100andadjacentregions,DongyingDepression,BohaiBayBasin,China(Sun,2009;Guoetal.,2010).Ingeneral,lowpermeabilitysandstonereservoirscanfurtherbedividedintothreetypesinChina,namely,conventionallowpermeabilitysandstonereservoir50–10mil-liDarcys,ultra-lowpermeabilitysandstonereservoir10–1milliDarcys,andsuper-lowpermeabilitysandstonereservoir1–0.1milliDarcys(Li,1997).effects,burialdepth(thepressureandtemperatureteristicsoftheinterstitialfluids,etc.Naturally,differentscalesinahierarchicalfashionaroundtheetal.,2005;Smartetal.,2009,2012).Inlowpermeabilityreservoirs,themajorityofreservoirspacesandflowdrocarbonareprovidedbyfractures,especiallytectoniccansignificantlyandeffectivelyimprovethepermeability(RijkenandCooke,2001;Shedid,2006;Zengand2013;Juetal.,2013b,2014a,2015).ZengandLi(2009)fracturepermeabilityinlowpermeabilitysandstoneslargerthanmatrixpermeabilitybyoneortwoordersTherefore,theabilityofpredictingthedevelopmenttectonicfracturesinlowpermeabilitysandstonereservoirsTectonicfracturesareimportantreservoirspacesforstorageofhydrocarbonsinlowpermeabilitysandstonereservoirsandcansignificantlyimprovethepermeability;therefore,understandingandpredictingtheirlocationandintensityinreservoirsareofextremeimportanceforboththeexplorationandexploitationplanningactivities.Inthepresentstudy,theEarlyHimalayanDongyingperiodpaleotectonicstressfield,theperiodoftimewhenthemajorityoftectonicfracturesgeneratedintheDongyingDepression,BohaiBayBasin,China,wassimulatedandinvestigatedwithathreedimensionalfiniteelement(3DFE)model.EstimationoftheComprehensiveRuptureRate(CRR)andtherelationshipbetweenthemeasuredtectonicfracturedensitiesandCRRswereundertakentoquantitativelypredictthedevelopmentanddistributionoftectonicfracturesintheEs3mlowpermeabilitysand-stonereservoir.Theresultsindicatedthatwelldevelopedtectonicfractureswerelocatedinregionswithinandbetweenfaultzones,nearfaulttips,andtheeasternpartsofBlockShishen100andadjacentregions.Faultac-tivitieswerecriticaltothedevelopmentanddistributionoftectonicfracturesintheEs3mreservoirofBlockShishen100andadjacentregions.Inaddition,abnormalhighfluidpressuresintheEs3mreservoircanpromotethedevelopmentoftectonicfractures.ARTICLEINFOABSTRACTPredictionoftectonicfracturesinlowpermeabilitycasestudyoftheEs3mreservoirintheBlockregions,DongyingDepressionWeiJua,b,c,*,CaifangWub,c,KeWangd,WeifengSunbaKeyLaboratoryofCoal-basedCO2CaptureandGeologicalStorage,Xuzhou221008,ChinabSchoolofResourcesandGeosciences,ChinaUniversityofMiningandTechnology,Xuzhou221116,cKeyLaboratoryofCoalbedMethaneResourcesandReservoirFormationProcess,MinistryofEducation,ChinadPetroChinaHangzhouResearchInstituteofGeology,Hangzhou310023,ChinaeLaboratoryofCoalfieldGeologyBureauofGuizhouProvince,Guiyang550081,Chinasandstonereservoirs:A100andadjacentLib,XixiChangeChinaChinaUniversityofMiningandTechnology,Xuzhou221008,etal.,2015;JuandSun,2016).Generally,tectonicstressfieldisanimportantcontrollingfactorforthedevelopmentanddistributionoftectonicfracturesinreservoirs(MckinnonandGarridodelaBarra,1998;Tuckwelletal.,2003;Zhouetal.,2008;Jiuetal.,2013;Juetal.,2013b,2014a;Dingetal.,2016).Therefore,oneimportantmethodusedinthepetroleumexplorationandexploitationistostudythetectonicstressfieldanditsevolutionprocessesinvolvedinfracturedevelopment.Inthepresentstudy,theEarlyHima-layanDongyingperiodpaleotectonicstressfield,theperiodoftimewhenthemajorityoftectonicfracturesgeneratedintheBlockShishen100andadjacentregions,wassimulatedandinvestigatedwitha3DFEmodel.EstimationoftheComprehensiveRuptureRate(CRR)andtherelation-shipbetweenthemeasuredfracturedensitiesandCRRswereundertakentoquantitativelypredictandanalyzethedevelopmentanddistributionoftectonicfracturesintheEs3mlowpermeabilitysandstonereservoirofBlockShishen100andadjacentregions,DongyingDepression,BohaiBayBasin.2.GeologicsettingsTheBohaiBayBasin,animportanthydrocarbon-producingprovinceinChina,islocatedontheeasterncoastofChinaandcoversanareaofapproximately2C2105km2(Guoetal.,2012).ItisariftbasindevelopedontheArcheanbasementoftheNorthChinaPlatformintheLateCretaceous(Huetal.,2001;Guoetal.,2012),consistingofaseriesofsub-basins,includingtheJiyang,LiaodongBay,Bozhong,Huanghua,Jizhong,LinqingandLiaohesub-basins(Gong,1997).TheDongyingDepressionislocatedinthesouthernpartoftheJiyangsub-basinwithanareaof5.7C2103km2(Houetal.,2001;Zhuetal.,2004;Guoetal.,2012;Chenetal.,2015,Fig.1).ItisboundedbytheQingtuoziUplifttothenortheast,theGuangraoUplifttothesoutheast,theBinxianUplifttothenorthwest,andtheChenjiazhuangUplifttothenorth(Fig.1).TheDongyingDepressionisfilledwithathicksedimentsequence,whichincludesthePaleogeneKongdianFormation(Ek),ShahejieFor-mation(Es)andDongyingFormation(Ed),theNeogeneGuantaoFor-mation(Ng)andMinghuazhenFormation(Nm),andtheQuaternaryPingyuanFormation(Qp)(Fig.2).ThePaleogenesystemisasetofclasticrocksdominatedbymudstoneintermixedwithsandstone,carbonateandevaporaterocks(Zhuetal.,2004;Chenetal.,2015,Fig.2).TheEscontainsthemainsourcerocksandsandstonereservoirrocksofDon-gyingDepression,andcanbedividedintofourmembers,namely,Es1,Es2,Es3andEs4fromtoptobottom(Fig.2).TheEs3canfurtherbedividedintothreeparts:theupper(Es3u),middle(Es3m)andlowerpart(Es3l).Themajoroil-bearingsequencesintheBlockShishen100andadja-centregionsofDongyingDepressionarethethirdmemberofShahejieFormation(Es3),especiallythemiddlepart(Es3m).TheEs3mreservoirisdeeplyburiedrangingfromC04250mtoC03200m(Fig.3)withfracture-poredualmedium,andisatypicallowpermeabilitysandstonereservoir.Theaverageporosityis18.5%,andthepermeabilityis1–40milliDarcyswithanaverageof13.3milliDarcys(Sun,2009).Generally,faultsarewelldevelopedintheBlockShishen100andadjacentregions,andtheyareprimarilylocatedintheeasternandnorthwesternpartofthestudy(b)W.Juetal.JournalofPetroleumScienceandEngineering156(2017)884–895Fig.1.(a)SketchmapshowingthelocationofBohaiBayBasinanditssub-tectonicunits;etal.,2012).885DistributionmapofoilfieldsandnormalfaultswithintheJiyangsub-basin(afterGuoW.Juetal.JournalofPetroleumScienceandEngineering156(2017)884–895areawithadominant~E-W-trending(Fig.3).3.CharacteristicsoftectonicfracturesGenerally,fracturescanbedividedintotwogenetictypes:tectonicfracturesandnon-tectonicfractures(Fossen,2010;Juetal.,2015).Tectonicfracturescanlargelycontrolfluidmovementsinlowperme-abilitysandstonereservoirs,whereasnon-tectonicfracturescontributelittletotheoverallpermeabilityduetotheirweaklateralcontinuityandsmallaperturesunderlithostaticpressure(ZengandZheng,1999;ZengandLi,2009);therefore,tectonicfractureswereprimarilyfocusedinthisstudy.Inthepresentstudy,thecharacteristicsoftectonicfracturesintheEs3mreservoirofBlockShishen100andadjacentregionswereanalyzedbasedondrillcores(Fig.4).TheresultsindicatedthattectonicfractureswerewidelydevelopedintheEs3mreservoir,whicharegenerallydividedintotensileandshearfractures.IntheEs3mreservoir,themajorityoftensilefractureswereopen.Fewtensilefracturesweresubsequentlyfilledwithminerals(e.g.,calcite)orasphalt(Fig.4b).Mostofshearfractureswerealsounfilledwithgenerallystableorientations(Fig.4aandc).BasedonFig.2.GeneralizedCenozoic-QuaternarystratigraphyoftheDongyingDepressionshowingtheofEs3mlowpermeabilitysandstonereservoir.(Forinterpretationofthereferencestocolourin886thestatistics,themajorityoftectonicfracturesintheEs3mreservoirofBlockShishen100andadjacentregionswereshearfractures,whichaccountsforapproximately80%ofthetotalnumberoftectonicfractures.Thetectonicfractureorientationsareextremelyimportantparame-tersintheexplorationandexploitationoffracturedlowpermeabilitysandstonereservoirs.IntheBlockShishen100andadjacentregions,statisticalanalysisoftectonicfracturedipanglesintheEs3mdrillcoresindicatedthatfracturedipsaresteeperneartothefaults,e.g.Well103,andshallowerawayfromthefaults,e.g.Well106(Fig.5).ThestrikesofmosttectonicfractureswereintheENE-WSWdirection(Fig.5),sug-gestingthattheywereformedatthesametimeasthefaults.Generally,fracturedensityisanimportantindicatorforrevealingthedevelopmentdegreeoftectonicfracturesinsubsurfacereservoirs(VanGolf-Racht,1982;Juetal.,2013a,2014a,2014b).Inpetroleumreservoirengineering,fracturedensitycanbedividedintolinearfracturedensity(Dl),arealfracturedensity(Da)andvolumetricfracturedensity(Dv)(VanGolf-Racht,1982).Volumetricfracturedensityisaratiobetweenfracturebulksurface(Sf)andmatrixbulkvolume(V)thatcanbestrevealthedevelopmentoffractures(Eq.(1);VanGolf-Racht,1982;Huangetal.,1997).tectonicevolutionstagesandmajorpetroleumsystems.Theredstarindicatesthelocationthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)W.Juetal.JournalofPetroleumScienceandEngineering156(2017)884–895Dv¼SfV(1)Indrillcores,thefracturesurfaceisgenerallyconsideredasaflatplane;therefore,thematrixbulkvolumecanbeeasilycalculatedwithEq.(2).V¼π⋅r2⋅h(2)whereristheradiusofthecore,histheheightofthecore.Thefracturebulksurfaceishardtocalculate.Basedongeometricshapesoftectonicfractures,Huangetal.(1997)analyzedthemethodsforcalculatingfracturebulksurfaceindrillcores,whichareasfollows:a)thefracturedipangleequalsto90C14(β¼90C14),thefracturebulksur-faceindrillcorescanbecalculatedwithEq.(3).Sf¼Xni¼1Li⋅Hi(3)b)thefracturedipanglevariesbetween0C14and90C14including0C14(0C14C20β>>:Sf¼Xni¼1D24C18π180αicosβiC0sin2αi2cosβiC19αi¼arccosC181C02Li⋅cosβiDC19(4)wherenisthenumberoftectonicfractures,Disthediameterofthecore,βisthefracturedipangle,Listhelengthofafractureinthedipdirection,andHisthelengthofafractureinthestrikedirection.Basedontheaboveformulas(Huangetal.,1997;Zengetal.,2010),theaveragevolumetricfracturedensityintheEs3mdrillcoresofBlockShishen100andadjacentregionswascalculated,whichvariedbetween0.46mC01and1.50mC01withthelargestinWellS103(Fig.6).4.NumericalsimulationoftectonicstressfieldThepurposeoftectonicstressfieldnumericalsimulationistoun-derstandthedistributionofstresseswithinrockswiththeapplicationofboundaryforces,usinginversionandforwardmodelingapproaches(Smartetal.,2012;Juetal.,2013a,2014b).4.1.MethodTheFEmethodisgenerallyusedtogainquantitativeinsightsintothedistributionofstressesinreservoirsbecauseitcanallowrobustintheBlockShishen100andadjacentregionsofDongyingDepression.W.Juetal.JournalofPetroleumScienceandEngineering156(2017)884–895simulationsofcomplexstructureswithnon-linearmaterialbehavior(FischerandHenk,2013).BasedonthebasicconceptofFEmethod,theFig.4.PhotosoftectonicfracturesintheEs3mdrillcoresofBlockShishen100andadjacentregionsfracturefilledwithasphaltinWellS103,C03289.50m;(c)unfilledshearfractureinWellS103,Fig.5.TheorientationsoftectonicfracturesintheEs3mdrillcoresofBlockShishen100andadjacentneartoalargefault(seeFig.3),(b)thestrikesoftectonicfracturesinWellS103,(c)thedistributionfracturesinWellS106.888geologicalbodiesarediscretizedintoalargenumberoffinitecontinuouselementsconnectedbynodes.Eachelementisallocatedwithappropriate(a)unfilledhigh-angleshearfracturesinWellS102,C03277.50m;(b)low-angletensileC03286.50m;(d)filledhigh-angleshearfracturesinWellS103,C03272.85m.regions,DongyingDepression.(a)thedistributionoffracturedipanglesinWellS103,offracturedipanglesinWellS106,awayfromthefaults,and(d)thestrikesoftectonicBasedonthecharacteristicsanddensityoftectonicfracturesnearbethedepthdirectionandtheverticalupwardwaspositive(Fig.7).Finally,thepresentFEmodelcontaineddifferentzonesrepresentingfaultsandtheEs3msedimentarylayer.DuringFEmodeling,asthereisnocleargeologicalboundarytodemarcatethestudyareafromtherestpartofDongyingDepression,theboundaryconditionsaredifficulttobeassumed.Therefore,toavoidtheseproblems,theEs3mreservoirofBlockShishen100andadjacentregionswasnestedinalargerectangularparallelepipedwithitsplanarareaapproximately5timesthatofthestudyarea(Fig.7a),whichcanalsoeliminatetheinfluenceofboundaryeffectsonthesimulationresultsandfacilitateapplyingloads(Zhouetal.,2004;Juetal.,2013b;JuandSun,2016).TheEs3msedimentarylayerandfaultzoneswithintheFEmodelwerecontinuouslymeshedanddiscretized,andaftermeshing,thereareapproximately82,996nodesand62,518elementswithintheFEmodel(Fig.7b).W.Juetal.JournalofPetroleumScienceandEngineering156(2017)884–895(e.g.,Well103)andfaraway(e.g.,Well106)fromthefaults(Figs.5and6),thereisanassumptionbehindthemodelthatthefaultsformfirst,andthefracturegenerationistheninfluencedbytheeffectofthefaultsonthestressesbetweenthefaults.Inaddition,thepurposeofthisFEmodelistoexpressthedistributionofstressesandpredictthedevelopmentanddistributionoftectonicfractures,thefaultisanimportantfactor.Therefore,Inthepresentstudy,aninitial3DmodeloftheEs3mreservoirwasconstructedbasedonstructuralinterpretationoftheseismicdata,drillingdataandcoretestingresultsintheBlockShishen100andmechanicalparametersdeterminedforrealrocks.Allelementsarecombinedtoobtaintectonicstressfieldovertheentiregeologicalbodies(Zhouetal.,2009;Dingetal.,2012;Jiuetal.,2013;JuandSun,2016).Inthepresentstudy,theEarlyHimalayanDongyingperiodpaleo-tectonicstressfieldintheBlockShishen100andadjacentregionsofDongyingDepressionwassimulatedandanalyzedwithANSYSsoftware(version12.0),whichallowscomplexgeometries,lithologicaldifferencesandfaultmorphology(Yin,1989,1991;Houetal.,2006,2010;Juetal.,2013a,2014a).4.2.GeometryFig.6.VolumetricfracturedensityintheEs3mdrillcoresofBlockShishen100andadjacentregions,DongyingDepression.adjacentregions,andfaultswithintheFEmodelwererepresentedbyweakness(orsoft)zones(e.g.,FischerandHenk,2013;Juetal.,2013a,2013b;JuandSun,2016).Intheinitial3Dmodel,thex-andy-axisweredirectedtotheeastandnorth,respectively,andthez-axiswasassumedtoFig.7.Thenestedmodel(a)andmeshingoftheinitial3DFEmodel(b)fortheEs8893mreservoirofBlockShishen100andadjacentregions,DongyingDepression.4.3.MaterialpropertiesRockmechanicsexperimentsrequiredtosupportthemechanicalparametersfortheEs3mlayer.Inthepresentwork,atotalof23samplesfromthedrillcoreswerecollectedforrockmechanics.Therockdensitiesweredeterminedbydensityanalysis,theYoung'smoduliandPoisson'sratios
展开阅读全文
  石油文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
0条评论

还可以输入200字符

暂无评论,赶快抢占沙发吧。

关于本文
本文标题:1-s2.0-S0920410517305545-main
链接地址:http://www.oilwenku.com/p-70374.html

当前资源信息

吾王的呆毛

编号: 20180607204723298565

类型: 共享资源

格式: PDF

大小: 5.39MB

上传时间: 2018-06-08

广告招租-6
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服客服 - 联系我们
copyright@ 2016-2020 石油文库网站版权所有
经营许可证编号:川B2-20120048,ICP备案号:蜀ICP备11026253号-10号
收起
展开