• / 9
  • 下载费用:5 下载币  

1-s2.0-S0920410513000144-main

关 键 词:
s2 S0920410513000144 main
资源描述:
Articlehistory:Received16December2011Accepted14January2013waterfloodsurveillanceandmodelingcapacitance–resistancemodelingtracertestingrate-transientanalysisModified-Hallanalysismaterial-balanceanalysisEstablishingconnectivityamongvariousinjectorsandproducersisakeytoimprovetheunderstandingofareservoirunderwaterflood.Thisunderstandingimprovestheestimatesforultimaterecoveryandalsohelpstobetterdefinethefuturedevelopmentplan.Indeepwaterturbiditereservoirs,numericalmomentum.StudiesofKingetal.(2002),Chaconetal.(2007),timecluesanalysis(RTA),asdiscussedbyKabirandIsmadi(2011),amongContentslistsavailableatSciVerseScienceDirectJournalofPetroleumScienceJournalofPetroleumScienceandEngineering102(2013)1–9drillingofanewproducerorinjectormaycausethechangeinE-mailaddress:shahkabir@gmail.com(C.S.Kabir).Langaasetal.(2007),HustedtandSnippe(2008),andPandaetal.others.Fundamentallyspeaking,theRTA(PalacioandBlasingame,1993)estimatestheconnectedpore-volumeassociatedwithaproducer.Inamultiwallsystem,eitherexpansionofthedrainagevolumeowingtoaprolongedshut-inofaneighboringwellor0920-4105/$-seefrontmatter&2013ElsevierB.V.Allrightsreserved.http://dx.doi.org/10.1016/j.petrol.2013.01.004nCorrespondingauthor.Tel.:þ17134964512.Overthelastdecade,theuseofreal-timesurveillancedataforfrequentupdatesofagrid-basedmodelhasgainedconsiderableaboutareservoir’sperformance.Infact,thenotionofreservoirmanagementcanrevolvearoundmanyelementsofrate-transientsummarizedmanyofthetechnicalbenefitsofsurveillanceinhisseminalwork.Studiesprovidingoperationalguidancefromsurveillanceandimplementationofthenotionofdigitaloilfieldaremany;thoseofShyehetal.(2008)andMaskerietal.(2008)areworthyofnote.complementingnumericalmodelingoverlong,contiguousspans.Morerecently,KabirandBoundy(2011)showedbenefitsofintegratingvariousanalyticaltoolstounderstandthenuancesofreservoirbehaviorduringhistorymatchingwithagrid-basedmodel.TheuseofratetransientsoftenprovidesimportantMonitoringchangingpermeabilityandskinwithtimeusingpermanentdownholesensorshavebeenreportedbymanyauthors.StudiesofHaddadetal.(2004),Coludrovichetal.(2004),andWeilandandAzari(2008)arecasesinpoint.Horne(2007)integratingsurveillancedatawithfull-fieldsimulationstudies.Mostofthestudiescitedabovearelimitedtotheuseofsnapshotsofdynamicdata,suchaspressure-buildupanalysisandproduction-loganalysis,ratherthantryingtounderstandtheevolvingnatureofthefloodwithdynamicanalyticaltools1.Introductionflow-simulationmodelsareusedtomakeperformancepredictions,withreservoirconnectivityasoneofthekeyuncertainties.Intheinitialphaseoffielddevelopment,interwelltracerswereusedtoassesstheconnectivity.Asmorewellsweredrilled,updateswererequiredforthesimulationmodels.Insteadofwaitingforthenextphaseofanongoingtracerprogram,bothrate-transientanalysis(RTA)andcapacitance–resistancemodel(CRM)wereusedtounderstandconnectivity.TheinputforbothRTAandCRMaretheratesandpressures,whicharebeinggatheredwithreal-timesurveillance.ThispaperpresentsacasestudytocomparefindingsfromtheuseofinterwelltracerdatawiththeresultsofCRMbasedondynamicdata.AnotherstudyelementdemonstratestheuseofRTAinidentifyingandestimatingthevolumeofthiefzone.AttemptsaremadetouseCRMandRTAtopredictconnectivitybasedonperformancepriortoexperiencingwaterbreakthrough.ThesecasestudiesdemonstratetheapplicationofRTAandCRMinongoingwaterfloods.TheCRMconcurredwiththeinitialtracerresultsandhelpedtounderstandthechangeinpressuredistributionwithtimeasthefieldwasbeingdeveloped.WelearnedthattheuseofCRMcanbeaviablealternativetoaninterwelltracerprogramtoreduceuncertaintyrelatedtoinjector–producerconnectivity.CRMalsohelpedinunderstandingtheefficiencyoftheinjectors,whichisimportantinafacilitywithlimitedwaterinjectioncapacity.TheeaseofuseofCRMandRTAmakesthemusefulasscreeningtoolsintheprocessofdevelopingadetailedflow-simulationmodel.&2013ElsevierB.V.Allrightsreserved.(2009),andoverthelastdecadeshowtheobviousbenefitsofAvailableonline29January2013Keywords:AcasestudyofimprovedunderstandinginanevolvingwaterfloodwithsurveillanceB.Parekh,C.S.KabirnHessCorporation,1501McKinneyStreet,Houston,TX77010,UnitedStatesarticleinfoabstractjournalhomepage:www.elofreservoirconnectivitydatasevier.com/locate/petrolandEngineeringppressure,psitDdimensionlesstime(define)Vpdrainageporevolumeofreservoir,ft3freservoirporosityttimeconstant,daysSubscriptsjproducing-wellindexB.Parekh,C.S.Kabir/JournalofPetroleumScienceandEngineering102(2013)1–92porevolumeowingtointerference.Recently,Ismadietal.(2012)showedthechangingconnectedpore-volumeassociatedwithaproducerbecauseofprolongedoperationalshut-inofanearbywell.Animportantanalyticaltoolthatcanhelptounderstandreservoirperformanceofanevolvingfloodisthecapacitance–resistancemodel(CRM).Basedonthematerial-balanceprincipleandsignalanalysis,CRM(Yousefetal.,2006;Sayarpouretal.,2009a,2009b;Kavianietal.,2012)allowsascertainingconnec-tivityorlackthereofamongstinjector/producerpairs.Inthisrespect,CRMistrulyamultiwallpulse-testanalysistoolthatexploitsfluctuatinginjectionsignalspropagatingtowardprodu-cers.Therefore,boththereal-timerateandpressuredatarecordedatallproducersareimportantfactorsforanalysistoensureresultswithahighdegreeofconfidence.Thismethod0sappealstemsfromthefactthatnoadditionalexpensesarerequiredfortestingbecausetherateinformationprovidesthenecessaryingredientsevenbeforetheinjectantbreakthroughoccursattheproducers,asshownbyIzgecandKabir(2010).Inthepost-breakthroughsituation,injectionwatermaybecon-struedasatracerresponse;streamlinesimulationscorroboratedallthefindingsofthatstudy.Earlier,Sayarpouretal.(2009a)presentedtheunderlyingformulationsoftheCRMandalsoshowedtheirapplications(2009b)inthefield,amongothers.Inotherwords,theCRMprovidesanidealopportunityforunder-standingreservoirconnectivityattheinceptionofaflood.Thisstudypresentsaslateofanalyticaltoolsthatareappliedtolearnaboutthereservoirbehaviorenroutetounderstandinginjector/producerconnectivity.Inparticular,theCRMresultsarepiinitialreservoiroraquiferpressure,psipwfflowingbottomholepressureofproducer,psiDppressuredifferencebetweenreservoirandaquifer,psiq(t)totalproductionrate,RB/Dttime,daysNomenclaturecttotalcompressibility,1/psiewout-of-patternproductionsupport,RB/Dfijfractionofinjectedwater,dimensionlessI(t)injectionrate,RB/DJproductivityindexofproducer,RB/D/psikpermeability,mdcomparedwiththoseofatracertestforafaultblocktoshedlightoninjector/producerconnectivity.Thislearning,inturn,isexpectedtoassistimprovedmanagementofanongoingwater-floodinawell-instrumentedfield.Someoftheotherdiagnostictoolsaidingourunderstandingincludereciprocal-productivity-indexorRPI(Kumar,1977),water–oilratioorWOR(Yortsosetal.,1999),andmodified-Hall(IzgecandKabir,2009)plots.2.CasestudiesThecasestudiespresentedinthispaperarebasedonafieldinWestAfrica.Thisfieldhasmultiplereservoirsunderwaterflood.Allproducershavedownholeandwellheadpressuresensorstogetherwithfrequentratemeteringaspartofthereal-timemonitoringstrategy,leadingtointerventionasneeded.Eachreservoirhasmultiplestackedsands,oftenwithcommingledproductionandinjection.Naturally,questionsariseaboutproduc-tion/injectionallocationineachlayerandinter-reservoirconnectivity.Consequently,thisrealityaddscomplexityinunderstandingthedegreeofconnectivitybetweenvariousinjector/producerpairs.Toaddressthisuncertainty,aninterwell-tracerprogramwasinitiatedinAugust2008.Thusfar,tracershaveshownupatsomeoftheproducersandhaveprovidedqualitativeinforma-tionaboutconnectivity.However,waterhasnotbrokenthroughasyetinup-dipproducers,therebycloudingtheconnectivityquestionforthoseproducers.Theneedformodelupdatesurfacedwithdrillingofadditionalwellsin2010.Giventhetimeithastakenfortheinitialtracerprogramtorevealitselfinsomeofthereservoirs,weexploredothertechniquestoimproveunderstandingofreservoirconnec-tivity.Forthispurpose,toolssuchasCRMandRTAwereused.EffortwasmadetocompareCRMfindingsandtheinformationgatheredfromtheexistingtracerprogram,suchasinCase1,whereintra-reservoirconnectivitywassought.InCase2,weexploredtheinter-reservoirconnectivityquestionamongstfourgeobodies,wherenotracerprogramwasimplemented.Finally,Case3discussesascenariowherethepresenceofathiefzonewasconfirmedbyCRMandRTA,aidedby4Dseismicandinjectoranalysiswiththemodified-Hallmethod(IzgecandKabir,2009).TheinputforbothCRMandRTAaretheratesandbottomholepressures,whicharebeinggatheredwithreal-timesurveillance.Otherappropriateanalyticaltoolsalongwithtracerdatawerebroughttobeartoobtainclarityintheflood0sperformancetodate.Table1isasummaryoftoolsusedindifferentcases.2.1.Case1:understandingintra-reservoirconnectivityncurrenttimestepppore(volume)ttotal(compressibility)wfwellboreflowingENisoneofthereservoirsunderwaterfloodinthefieldofstudy.Thisreservoirinitiallyhadoneproducer,P-1,andoneinjector,I-1.TheP-2producerwasaddedabout1150daysaftertheproject0sinitiation.Aspartoftheinterwelltracerprograminthefield,achemicaltracerwasinjectedintoI-1welltoensurethatthisreservoirwasisolatedfromadifferentnearbywater-floodedreservoir.ThetracerwasinjectedintoI-1wellafter12monthsfromtheinceptionofinjection.PriortoP-2well0sTable1Summaryoftoolsusedinvariouscasestudies.AnalyticaltoolsCaseStudy-1CaseStudy-2CaseStudy-3Capacitance–resistancemodelC2C2C2Rate-transientanalysisC2Water–oilratioC2Reciprocal-productivityindexC2MaterialbalanceC2Modified-HallplotC2production,thetracerinI-1injectorhadshownuponlyattheP-1producer,therebyconfirmingconnectivitybetweenthetwowells.TracersfrominjectorsinneighboringreservoirshavenotbeenobservedattheP-1producer,suggestingENtobeanisolatedreservoir.Afterthreeyears,asecondproducer,P-2,wasputonproductioninEN,butthiswellwascompletedinashallowersand(Sand-2)comparedtoP-1producer,whichwascompletedinadeepersand(Sand-1),asdepictedinFig.1.Asopposedtothepredrillexpectationsofencounteringvirginpressure,theP-2wellcameinoverpressured,suggestingpossibleencroachmentoftheinjectedwater.Moreover,theP-2wellstartedproducingwaterinamonth0stimeandalsoshowedtracersfromtheI-1injector.Thetracerdataexplainstheexcesswell-productivityindex.Thehighcorrelationratioisameasureofhighsolutionquality,becauseitmeasurestherelationshipbetweenthestatisticaldispersionwithinandthedispersionacrossthewholeratesample;thatis,betweenthemeasuredandmodelrates.Part2:CRM0scapabilitywastestedduringPart2ofthestudy;thatis,afterthecommencementofP2well0sproduction.Figs.6and7aretheCRMresultsforP-1andP-2,respectively.Boththewellsinthisanalysiswereproducingwaterduringthishistorysegment.Part2resultsshowthatthetotalinjectionstreamwasbeingused100%asopposedtoamaximumof94%asobservedinPart1.Thefijof8%betweentheI-1andP-2wellsexplainstheoverpressureobservedinP2,andsupportstheearlierfinding(inPart1)thatsomeinjectedwaterwasgoingoutofthecontrolvolumeofinterest.LetusexploreourunderstandingofthephysicalsignificanceoftheCRMparameters.Whereasfijclearlyunderscoresthepreferentialmovementofwaterinagivengeologicsetting,tprovidesarelativeunderstandingoftimetakenfortheinjectionsignaltoarriveatagivenproducer.Typically,thesetwoparametersarecomplementary.Forexample,alargetvaluegoeshand-in-handwithalowfijvalue,meaningverylittleconnectivity.Conversely,asmalltvalueimpliesafasterresponseattheproducerandtheattendantlargerfractionofwater(fij)movinginthedirectionoftheproducer.Thispointismadebyexamining00.20.40.60.810Timefromwaterproduction,DaysWaterCut,fraction051015202530SkinWaterCutSkin100200300400500600700800Fig.3.RTAtackleschangingskinwithwatercutforP-1well.B.Parekh,C.S.Kabir/JournalofPetroleumScienceandEngineering102(2013)1–93pressureandearlywaterbreakthroughinproducerP-2,andalsoprovesthatthetwosandsareincommunication.Withtheabundanceofdata,theENreservoirwasconsideredagoodexampletotestCRM.TheCRMstudywasdividedintotwotimedomains:(1)StartofinjectioninI-1butpriortotheonsetofP-2production,and(2)postcommencementoftheP-2well.Themotivationforthistimesplithastodowithmaintainingconsistentmodelparametersthatreflecttheproductioncondition.Part1:Initially,weattemptedRTAtounderstandtheevolvingfloodperformance.Fig.2,showingtheoverallmatch,suggestsgoodagreement.Theincreasingshut-inbottomholepressure(SIBHP),ascomputedbytheRTAmodel,isareflectionofthefloodresponse.However,theincreasingwatercutbeyond500dayswassimulatedbywayoftime-dependentskintopseudoizethetwo-phaseflowproblem.Thisvariable-skinapproach,asdepictedinFig.3,implicitlyaccountsforchangingeffectivepermeabilityoftheoilphasewithsimplifiedsingle-phaseanalog.Togainclarityinmodelresponse,westudiedthisdomainintwoseparatetimesegments,beforeandafterwaterbreakthrough.Around400daysafterinjection,P-1startedproducingwater.Fig.4showsthematchqualitywithCRMpriortowaterproduction.Inthisandothersimilarplotsthatfollow,thecorrelationratioimpliestheratioofthevariancebetweenarraysofdatawithinasampletothevarianceofthewholesample.Inallsituations,weattemptedtocorrelatetheobserveddatawiththoseestimated.Fig.5displaysthematchforthepost-waterbreakthroughinP-1producer.ThisexampleillustratesCRM0sflexibilitytousehistoryinsegments.Figs.4and5suggesttheresponsetime(t)ofC2447–66daysandthefractionofinjectedwater,fij,of74–94%,indicatinggoodconnectivitybetweentheinjectorandthepro-ducerandhigh-injectionefficiencypriortowaterproduction.Thisresultalsoindicatesthatasmallpercentageofinjectedwaterwasgoingoutofthecontrolvolumeofinterest.AnotheroutputofCRMisproductivityindex(J).AsshowninFigs.4and5,Jdeclinedfrom16to8STD/D-psioncethewellstartedproducingwater,demonstratingtherelative-permeabilityeffectsonproduc-tionrates.TheincreaseinskininRTA,asshowninFig.4,isamanifestationofrelative-permeabilityeffects,whichcontrolstheSand-1Sand-2P-1P-2I-1Fig.1.ENreservoircross-sectionshowswelllocations.05001,0001,5002,0000Time,daysPressure,psiaFBHP-measuredFBHP-RTASIBHP-RTA03000600090001200015000LiquidRate,STB/D;CumProduction,MSTBCumProdLiquidRateRTAmodelΔoData2004006008001,0001,200Fig.2.Rate-transientanalysisofP-1wellinanevolvingwaterfloodinENreservoir.Figs.6and7,whereinalargerfractionofwatermovement(92%)fij=0.94;Correlationratio:94%4,0006,0008,00010,00012,00014,00016,0000Time,DaysTotalProduction,RB/DqmeasuredqCRMInjectionafii9848=62days;50100150200Fig.4.CRManalysisofP-1wellbeforetheqmeasuredqCRMInjection4,0006,0008,00010,00012,00014,000400Time,DaysTotalProduction,RB/D6,0008,00010,00012,00014,00016,000Injection,RB/Dfij=0.74;Correlationratio:87%500600700800900afii9848=66days;J=8STB/D-psi;Fig.5.CRManalysisofP-1well0spost-waterproduction.1,150Time,Days02,0004,0006,0008,00010,00012,00014,000TotalProduction,RB/DInjection,RB/D5006007008009001,0001,1001,200FlowingBHP,psiqmeasuredqCRMInjectionFBHP1,2001,2501,3001,350afii9848=110days;J=6STB/D-psi;fij=0.92;Correlationratio:93%Fig.6.CRManalysisofP-1well,postP-2productioncommencement.qmeasuredqCRMFBHP05001,0001,5002,0002,5003,0003,5001,150Time,Days5007009001,1001,3001,500FlowingBHP,psiafii9848=223days;J=2.7STB/D-psi;TotalProduction,RB/D1,2001,2501,3001,350fij=0.08;Correlationratio:76%Fig.7.CRManalysisofP-2well.B.Parekh,C.S.Kabir/JournalofPetroleumScienceandEngineering102(2013)1–944,0006,0008,00010,00012,00014,00016,000injection,RB/DJ=16STB/D-psi;250300350400breakthroughofinjectionwater.0300060009000120001500018000TracerConcentrations,pptP1P2StartofWaterInjectionTr
展开阅读全文
  石油文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
0条评论

还可以输入200字符

暂无评论,赶快抢占沙发吧。

关于本文
本文标题:1-s2.0-S0920410513000144-main
链接地址:http://www.oilwenku.com/p-70364.html

当前资源信息

吾王的呆毛

编号: 20180607204521813165

类型: 共享资源

格式: PDF

大小: 1.58MB

上传时间: 2018-06-08

广告招租-6
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服客服 - 联系我们
copyright@ 2016-2020 石油文库网站版权所有
经营许可证编号:川B2-20120048,ICP备案号:蜀ICP备11026253号-10号
收起
展开