• / 10
  • 下载费用:2 下载币  

第七节 储量计算

关 键 词:
地质 储层 沉积 地化 层序地层
资源描述:
第七节 储量计算一、 矿产资源及储量的分类与分级矿产储量简称储量,一般是指具有一定地质研究与控制程度的已查明的矿产资源。它是国家和地方合理规划工业布局,制定国民经济计划与资源政策的重要依据;是优化市场资源配置,实施资源宏观调控,安排矿产勘查计划、矿山开发与生产计划和管理的重要依据。矿产资源是现行可采或潜在可采的天然产出于地壳内或地表的固、液、气态矿产物质的堆积体储量已查明且具有现行可开采价值的那一部分资源量(同上) 。矿产资源及储量的分类分级的意义客观地反映了由于不同的观测尺度、勘查技术手段及其控制程度和研究程度,所获得的矿产资源在精度和可靠程度上的差别;反映了国民经济对于具有不同工业用途的矿产资源和储量的不同要求;便于全国性的矿产储量统计、规划、平衡,保证矿产资源合理利用。(二)矿产资源及储量的分类分级依据2. 可行性(技术经济)研究程度可行性研究(010) ;预可行性研究(020) ;概略研究(030)3. 储量开发的经济意义经济的(100) ;边际经济的(2;次边际经济的(2;内蕴经济的(300) ;经济意义未定的(?) 。(三)资源量和储量类别的具体划分1、 资源量1) 预测资源量经预查,依据已有资料分析对比估算的预测资源量(334)?,也是资源量的一种,属潜在矿产资源。2) 内蕴经济资源量矿产勘查工作自普查至勘探,地质可靠程度达到了推断的至探明的,但可行性评价工作只进行了概略研究,由于技术经济参数取值于经验数据,未与市场挂钩,区分不出其真实的经济意义,统归为资源量。可细分为 3 个类型:探明的内蕴经济资源量(331) 、控制的内蕴经济资源量(332) 、推断的内蕴经济资源量(333) 。3) 次边际经济资源量据详查、勘探成果进行预可行性、可行性研究后,其内部收益率呈负值,在当时开采是不经济的,只有在技术上有了很大进步,能大幅度降低成本时,才能使其变为经济的那部分资源量。细分为 3 个类型:探明的( 可研 )次边际经济资源量(2明的(预可研)次边际经济资源量(2制的(预可研)次边际经济资源量(2。2、 基础储量经过详查或勘探,地质可靠程度达到控制的和探明的矿产资源,在进行了预可行性或可行性研究后,经济意义属于经济的或边际经济的,也就是在生产期内,每年的平均内部收益率在 0 以上的那部分矿产资源。基础储量又可分为两部分:1) 边际经济基础储量即内部收益率介于国家或行业基准收益率与 0 之间的那部分,未扣除设计和采矿损失。有 3 个类型:探明的(可研)边际经济基础储量(2;探明的(预可研)边际经济基础储量(2;控制的(预可研)边际经济基础储量(2。2) 经济基础储量是每年的内部收益率大于国家或行业的基准收益率,即经预可行性或可行性研究属于经济的,未扣除设计和采矿损失(扣除之后为储量) 。又可分为 3 个类型,与储量中的 3 个类型呈对应关系:探明的(可研)经济基础储量(111b) ,探明的(预可研)经济基础储量(121b) 、控制的经济基础储量(122b) ;3 、储量经过详查或勘探,地质可靠程度达到了控制或探明的矿产资源,在进行了预可行性研究或可行性研究,扣除了设计和采矿损失,能实际采出的数量,经济上表现为在生产期内每年平均的内部收益率高于国家或行业的基准收益率。储量是基础储量中的经济可采部分。 根据矿产勘查阶段和可行性评价阶段的不同,储量又可分为可采储量(111) 、预可采储量(121)及预可采储量(122)3 个类型。二、矿产资源储量计算的原理和一般过程(一)储量计算的基本原理把自然界客观存在的形态复杂的矿体分割转变为体积与之大体相等、矿化相对均一的形态简单的几何体,运用恰当的数学方法,求得储量计算所需的各种参数,最后计算出矿产(矿石或金属)储量来。三、矿床工业指标的确定(二)矿床工业指标的概念和内容1、矿床工业指标的概念及意义矿床工业指标,简称工业指标,它是指在现行的技术经济条件下,工业部门对矿石原料质量和矿床开采条件所提出的要求,即衡量矿体是否具有开采利用价值的综合性标准。它是圈定矿体和计算资源储量所依据的标准。也是评价矿床工业价值、确定可采范围的重要依据。意义:合理地圈定矿体、计算储量正确地进行矿床技术经济评价综合利用矿产资源,减少损失确定最优的矿床开采方案,从而获得最高经济效果2 、工业指标的内容矿床工业指标可归纳为如下三类:第一类:与矿石质量有关的,如边界品位,最低工业(可采)品位,有害杂质最大允许含量,有用伴生组分的最低综合品位,矿石自然类型和工业品级的划分标准;出矿品位或入选品位等;第二类:与地质体厚度有关的,如最小可采厚度、夹石剔除厚度或夹石最大允许厚度等;第三类:其它的,如一些综合指标:最低工业米百分率(或工业米克吨值)、含矿系数;还有个别矿种所需规定的特殊标准,如铬铁矿的铬铁比、铝土矿的硅铝比,煤矿的挥发分、灰分、发热量,耐火材料矿产的耐火度、灼减量;与采矿条件有关的采剥比、开采深度等。其中最重要、最常用的几项工业指标是: 1)边界品位:指在圈定矿体时,对单个样品有用组分含量的最低要求,作为区分矿与非矿的分界标准。它直接影响着矿体形态的复杂程度、矿石平均品位的高低、矿石与金属储量的多少。它一般界于尾矿品位与最低工业品位之间。 2)最低工业品位,是指对工业可采矿体、块段或单个工程中有用组分平均含量的最低要求,亦即矿物原料回收价值与所付出费用平衡、利润率为零的有用组分平均含量。它是划分矿石品级,区分工业矿体(地段)与非工业矿体(地段)的分界标准之一。它直接关系到工业矿体边界特征和储量的多少。它常高于边界品位,在圈定矿体时,往往与边界品位联合使用。3) 矿体最小可采厚度,是指在一定的技术经济条件下,有开采价值的单层矿体的最小厚度。4)夹石剔除度(最大允许夹石厚度)是指在储量计算圈定矿体时,允许夹在矿体中间非工业矿石(夹石)部分的最大厚度。大于这一厚度的夹石应予以剔除,小于(等于)此厚度的夹石则合并于矿体中连续采样计算储量。5)有害杂质平均允许含量,是指块段或单工程中对产品质量和加工过程起不良影响组分的最大允许含量。6)共(伴)生组分综合利用指标:与主有用组分共(伴)生的,具有综合利用工业价值的其它有用组分的最低含量标 准 。 7)剥采比(剥离比) ,指矿床露天开采时,剥离的废石体积与采出矿石数量的比,即剥离量与矿量的比值。单位为立方米/吨。 (每单位矿石量需剥离的废石体积)大于此指标者,则不宜露天开采,应考虑地下开采。8)最低工业米百分率。它是对矿体厚度(米)与品位(%)乘积要求的综合指标。当品位值为克/吨(贵金属)时,称为最低工业米克吨值。它只用于圈定厚度小于最小可采厚度,而品位远高于最低工业品位的薄而富矿体(矿脉、矿层):当其厚度与平均品位乘积等于或大于此指标时,则圈为工业可采矿体。所计算储量原为表内储量,否则划入表外(次边际经济的资源量) 。 (二) 采、选、冶技术工艺又能提取回收的各种有用组分,都应综合利用;型分布区适合进行工业开采,并能进行分别选冶;经济上的合理性是指矿山企业在生产期间能获得合理的利润。选的均应分别开采,制定分别开采的指标。 其必须随具体情况而变化。 (三) 验法):根据现有类似矿床实际生产的品位指标和有关统计资料分析对比确定的方法。适用条件:有用组分简单,矿石加工技术性能不复杂的矿床;急待建设,来不及取得试验资料的小型矿山详查阶段计算储量时应用优缺点:优点:简单,节省人力、时间。缺点:选取的指标难以准确。态经济计算法)根据从矿石中提取一吨最终产品(精矿或金属)的生产成本不超过该产品的价格的原则来计算。过程为:根据矿床的特点和样品分析资料,拟定几组品位指标方案;根据矿床开采技术条件和拟采用的采矿方法确定可采厚度和剔除夹石厚度;按不同方案计算储量和矿石品位;不同方案的综合分析和技术经济比较,确定合理指标方案。方案法的优缺点:优点:是在一系列经济技术指标的基础上选定的,比较完善。缺点:若指标选择不当会使结论有一定的主观性;计算工作浩繁。方案法的应用条件:有完整的化学分析、技术加工试验及各项生产技术指标等原始材料。四、矿体圈定 在储量计算图上把矿体空间形态位置,即矿体边界线确定下来的工作,称为矿体圈定。(一) 体空间分布、形产状及其变化特点,有用组分和伴生组分空间分布规律,控矿地质因素的研究) ;得任意改动。(二) 矿体边界线的种类零点边界线:矿体尖灭点的联线。 一般情况下,它与矿体自然边界(矿体与围岩界线明显)或外边界线一致,表示各矿体大致分布范围。可采边界线:是指可供开采利用的矿体(矿块或块段)边界线内边界线:连接边缘见矿工程所形成的边界线,表示由勘探工程实际控制的那部分矿体分布范围。外边界线:用外推法确定的矿体边界线,表示矿体的可能分布范围;它与内边界线间的储量的可靠程度要低于内边界线范围内的储量。(三)矿体边界线的圈定方法矿体边界线的圈定一般是在勘探线剖面图、中段地质平面图或矿体投影图上,利用工程原始编录和矿产取样资料,根据确定的工业指标,结合矿床(体)地质构造特征、勘探工程分布及其见矿情况,全面考虑进行的。其一般步骤是: 相邻工程上对应边界点相连接,完成勘探剖面上的矿体边界圈定;再对矿体边缘两两相邻工程(剖面)和全部工程所控制的矿体各种边界线的适当连接和圈定。 1.单个工程中矿体边界点(线)的确定1)根据截穿矿体的单个工程中连续分段取样化验分析结果,将大于边界品位的样品分布地段全部圈成矿体。2)圈为非矿地段的总厚度若小于夹石剔除厚度者则作矿处理。否则作为夹石剔除。若圈入矿体的地段总厚度大于最小可采厚度则为矿体;品位与厚度的乘积小于最小工业米百分率可采厚度者则作非矿处理;大于工业米百分率者仍为矿体。3)计算每个矿段的厚度和厚度加权平均品位。若平均品位大于最低工业品位则为能利用储量(表内矿) ;否则,为暂不能利用储量(表外矿,次边际经济的资源量、2。2.两相邻工程及全部工程中矿体边界线的圈定在储量计算图上,在完成单个工程中矿体边界线基点确定以后,沿矿体走向和倾斜方向上,矿体边界线的圈定常用以下方法完成:(1)直接法当相邻两工程均穿过符合工业指标要求的矿体边界基点,且地质条件又允许时;或由于矿体与围岩界线清楚,由工程地质编录直接测绘了边界基点位置,则相对应基点用直线连接,即得相应的矿体边界线。(2)插入法当两工程间有破坏矿体的后期地质构造(如断层、岩脉)划隔开来,造成两工程所见矿化陡然变化时,以该地质构造接口线划开(地质法)。当相邻两见矿工程一个穿过符合工业指标要求的矿体,另一个工程所见为非工业矿化(低于工业指标要求)时,可采边界线(基点)在两个工程之间,可用内插法求得。插入方法视具体情况而定:(3)有限推断(外推)法:即在边缘见矿工程与未见矿工程之间划出矿体边界线的方法。首先确定矿体尖灭点的位置:可采用形态的自然趋势尖灭法;或视具体情况,采用工程间距的1/2、1/3、2/3、1/4、3/4等几何方法;其次将矿体尖灭点与见矿工程中矿体顶、底板界线点直线相连,得矿体零点边界线;(4)中点尖灭法及无限外推有限外推时,以两工程的中点作为尖灭点,即是中点尖灭法。无限外推时,常用正常网度的 1/2、1/3 或 1/4 的间距外推;根据矿床地质特征和矿体变化规律外推根;据物化探资料外推;根据已揭露部分矿体规模予以推断外推(四)矿体圈定的注意点矿床地质特点和矿化规律的掌握是正确圈定矿体的基础;露天开采的矿体在开采境界范围外的小矿体不需圈入;推断的矿体厚度不应大于两个工程的实际见矿厚度;圈定矿石自然类型边界必须考虑地下水面对氧化矿化布的影响。 (五) 矿体圈定中的块段划分块段是矿产储量计算的基本单元,在投影图或剖面图上的面积由勘探工程揭露,并按如下标志划分。不同的勘探程度而获得的不同储量级别;能利用储量和暂不能利用储量,不同级别的储量分为不同块段。矿石的不同自然类型和工业品级;如氧化矿与原生矿,贫矿与富矿分为不同块段。不同的开采系统的需要。按不同的产状、标高或开采条件划分不同块段。注意:块段不要太零乱,要编号。五、储量计算参数的确定储量计算参数包括:矿体面积、矿体平均厚度、矿石平均品位、矿石平均体重有时还包括:矿石湿度、含矿系数(二)矿体平均厚度的计算算术平均法 M=(ΣM i)/ n;控制长度加权平均法 M=(ΣM (Σl i)(三) 矿石平均品位的计算矿石平均品位的计算程序,一般是先计算单个工程(线)的平均品位,再计算由若干工程控制的面平均品位;最后计算矿块(或矿体)的体平均品位和全矿区(矿床)的总平均品位。计算方法分为算术平均法和加权平均法两种。一般当某些样品品位所代表的试样长度、重量、矿体厚度、控制长度或矿石体重、断面面积等不相等,且有相关关系时,常采用以相应参数(一个)或几个参数(≥2 个)乘积为权的加权平均法求其平均品位;否则,一般均采用算术平均法计算其平均品位。当有特高品位存在时,应先处理特高品位,再求平均品位 。1. 工程平均品位计算算术平均 C = (Σc i)/n 厚度加权平均 C =(Σc (Σm i)2. 剖面和块段平均品位计算剖面平均品位如果取样间距不等,且品位与厚度具正相关时,需用厚度和样品控制长度加权平均C 剖 = Σ C Σm 可以不以控制长度加权,品位与厚度不具相关性,则可不以厚度加权。块段平均品位 C 块 =(C 12(S 1+高品位(风暴品位)是指高出一般样品品位很多倍的高品位。高出的倍数与品位变化系数有关。品品位究竟高到什么程度才算特高品位?目前尚无统一的标准和确定方法。有人应用经验模拟法,有人应用概率统计计算法进行确定。一般情况下,人们常是根据矿床类型与矿石品位变化特点,如有色金属矿床,将品位值高于矿体(床)平均品位 6—8 倍者为特高品位。当矿体品位变化系数大时,取上限值,反之,取下限值。 算平均品位时将特高品位去除掉;以整个坑道或块段的平均品位代替;用特高样品相邻的两个样品的平均值代替;用一般样品的最高值代替。六、储量计算方法几何学方法:地质块段法、开采块段法、断面法(剖面法)……地质统计学法:克里格法、(一)地质块段法根据矿床地质特点和勘探程度将矿体划分为若干块段。将它们看作是以块段内所有工程厚度为平均厚度的理想的板状体。板状体的体积为块段体积。地质块段法计算公式根据块段内全部工程数据,用算术平均法计算出块段的平均厚度(m i) 、平均品位( 和平均体重(d i) 。块段体积(V i) 、矿石储量(Q i)及金属储量(P i)用下列公式计算:V i = ;Q i = i = 矿石储量(Q)和金属储量(P)则是各块段储量之和。特点:地质块段法适用于任何产状、形态的矿体,它具有不需另作复杂图纸、计算方法简单的优点并能根据需要划分块段,所以被广泛使用。当勘探工程分布不规则,或用断面法不能正确反映剖面间矿体的体积变化时;或厚度、品位变化不大的层状或脉状矿体,一般均可用地质块段法计算资源量和储量。但当工程控制不足,数量少,即对矿体产状、形态、内部构造、矿石质量等控制严重不足时,其地质块段的划分根据较少,计算结果也类同其它方法误差较大。 (二)开采块段法当矿体被坑道切割成许多块段时可应用开采块段法计算储量。储量计算图件:矿体垂直投影图,有时用沿矿体倾斜面的投影图。储量计算分如下三种情况:矿体块段被坑道四面圈定;矿体块段被坑道三面圈定;矿体块段被坑道二面圈定。1. 当矿体块段被坑道四面圈定时当开采块段的上下为沿脉,左右为天井所揭露时,块段呈矩形。在投影面上块段面积即 H×L。块段的平均厚度(m) 、平均品位(C)和平均体重(d)可根据其变化特点,用算术平均法或加权平均法求得。块段体积是投影面积与其相垂直的厚度的平均值之积。如在垂直投影面求得投影面积,而厚度是真厚度,则应根据矿体中心面与铅垂面的夹角 α 加以换算: S=S′/ 矿石储量(Q)为:Q=属储量(P)为:P=当矿体块段被坑道三面或二面圈定时首先计算被揭露各边的平均厚度和平均品位。然后求两边或三边的品位算术平均值为块段的平均品位。其余与四面圈定的计算相同。如三面圈定的计算:C=(C 1+3)/3 m=(m 1+m2+3开采块段法常适用于以坑道工程系统控制的地下开采矿体,尤其是开采脉状、薄层状矿体的生产矿山使用最广。由于其制图容易、计算简单,能按矿体的控制程度和采矿生产准备程度分别圈定矿体,符合矿山生产设计及储量管理的要求,所以生产矿山常采用。但由于开采块段法对工程(主要为坑道)控制要求严格,故常与地质块段法结合使用,一般在开拓水平以上采用开采块段法或断面法,以下(深部)用地质块段法计算储量。 (三) 断面法(剖面法)断面法计算储量的图件是勘探线地质剖面图。断面法分类:垂直断面法和水平断面法平行断面法和不平行断面法断面法的应用条件:只要勘探工程按勘探线或勘探网及水平勘探系统布置的均可应用。断面法的优点:断面图保持了矿体的真实形状并反映地质构造的特点;用勘探线剖面图作储量计算的断面图工作量不大、手续简单;可根据储量级别及矿石的工业类型、工业品级任意划分块段,方法灵活。断面法(剖面法)计算步骤在剖面图上把矿体划分为若干块段;测量每个块段的面积;计算两剖面间或剖面外推部分的体积;计算矿石平均体重及平均品位;计算矿石储量;计算金属储量;矿产储量汇总。1、平行断面法块段体积计算公式设剖面间距为 L 相邻剖面的块段面积较大者为 小者为 面积相对差 k=(S 1S 1 , 则矿体体积 1)V = L( S 1+2 (梯形公式)当 k≤40%时2)V = L( S 1+ S 1(截锥公式)当 k>40%3)V = L S 1/2 当 ,楔形尖灭时4)V = L S 1/3 当 ,锥形尖灭时块段储量计算公式设块段的矿石平均体重为 D,平均品位为 C,则该块段的矿石储量 Q 和金属储量 P 分别为:Q= P=不平行断面法I 和 两条不平行的断面,其块段面积为 2。各剖面相应的矿体投影长度分别为 矿体在平面上的投影点圈成图上绿色区域。C 1、c 2为两断面中点的连线,将绿色区域分为 部分。则:S 1/ 1 ′; V 2=(S 2/ 2′ ; V=V 1+面法在地质勘探和矿山地质工作中应用极为广泛。它原则上适用于各种形状、产状的矿体。其优点是能保持矿体断面的真实形状和地质构造特点,反映矿体在三维地质空间沿走向及倾向的变化规律;能在断面上划分矿石工业品级、类型和储量类别块段;不需另作图纸,计算过程也不算复杂;计算结果具有足够的准确性。但是,当工程未形成一定的剖面系统时,或矿体太薄,地质构造变化太复杂时,编制可靠的断面图较困难,品位的“外延”也会造成一定误差是其缺点。 3、 最近地区法和三角形法这两种方法都是根据见矿工程划分矿块计算矿储量,然后汇总。最近地区是某工程与邻近工程连线的中垂线所围成的地区。以该工程的厚度、品位等参数计算矿块储量。连接各见矿工程得到一系列三角形。以三角形三个顶点上工程的厚度、品位的算术平均值作为矿块的厚度、品位估值计算矿块储量。(四)地质统计学地质统计学是根据相邻变量的值(如若干样品的值) ,利用变异函数所揭示的区域化变量的内在联系来估计空间变量的数值方法。1951 年南非金矿采矿工程师 出了按照样品与待估块段的相对空间位置和相关程度来计算块段品位及储量,并使估计误差为最小的方法——克立格法。克立格法是以矿石品位和矿床资源量/储量的精确估算为主要目的,以区域化变量理论为基础,以变异函数作为主要工具,以电算为手段,对既具有随机性,又具有空间结构性(相关性)的变量(如品位、厚度等)进行统计学研究。实质上是一种高技巧的统计插值模型,能够把矿体中有限的探矿工程取样测试资料传递到矿床任何一个局部地段,能最大限度地有效利用这些信息;因为在估算时,充分考虑了品位(变量)的空间变异性和矿化强度在空间的分布特征,使估算结果更加符合地质规律,置信度高。但需有较多的样本个体为基础;计算所需时间和费用较多;所圈定矿体边界为折线,与矿体自然边界往往不一致。在矿床勘查过程中,运用这种方法,针对矿床的地质特征,能帮助选择勘探与开采方法,还能制定或检验合理的勘探工程间距。区域化变量是一种在空间上具有数据的实函数。它具有两个性质:结构性和随机性。从矿业角度看,区域化的概念与某些定性特征有关:局部性 区域化变量只限于区域化几何域,且以几何支撑定义的。连续性 通过两个相邻样品之间的变异函数来描述。异向性 在各个不同的方向上,往往其变化性的大小及变化性质不同。可迁性 在区域化几何域内具有明显的空间相关性,超出此范围相关变弱或消失。以向量 h 相隔的两点 x,x+h 处的两个区域化变量 z(x),z(x+h)之间的变异可用它的增量[z(x)-z(x+h)]平方的数学期望 2γ(x,h)=E{[z(x)-z(x+h)] 2}来表示,2γ(x,h)称为变异函数。要估计该函数,必需要有 z(x),z(x+h)这一对区域化变量的若干现实,但同一点只能取一次样,即只有一个现实。为此提出内蕴假设的概念。内蕴假设是指随机函数 z(x)的增量[z(x)-z(x+h)]只依赖于分隔它们的向量 h,而不依赖于具体位置 x。地质统计学计算储量的大致步骤:计算实验半变异函数。建立矿化空间结构理论模型,拟合实验关变异函数。估计平均值,建立矿床模型,包括:列出克立格方程组;对克立格方程组中点与点的变异函数求解;计算块段与样品之间的变异曲线;计算块段估值和估计方差。克里格法的特点及应用条件优点:所估算的矿石品位和矿石储量精确;应用条件:地质变量的二重性是克里格法估算储量的最重要的条件,如果矿床参数是纯随机的或非常规则的,就不宜或不必用克里格法。克里格法的计算量十分庞大,故它还以计算机的应用为前提。克里格法虽可最大限度地利用勘查工程所提供的信息,但在勘查资料不理想的情况下,如工程数或取样点过少,运用此法信息量就不足,很难得到可靠的估计。 (五)量估算法,简称 ,我国科技人员于 20 世纪 80 年代博采国内外资源/储量估算方法之众长,在继承和改造传统法基础上,创立了独具中国特色的系列矿产资源/储量估算方法。是以方法的简便灵活为准则,以资源/储量估算精确可靠为目的,以最佳结构地质变量为基础,以断面构形为核心,以样条函数及分维几何学为数学工具的资源/储量估算方法。的主要内容包括结构地质变量、断面构形理论、资源/储量估算及 度法等 4 部分。 ——最佳结构曲线断面积分储量估算及储量审定计算法。“有原理、方法、功能几方面含义,量计算法也由此得名:最佳结构曲线是由 数(三次样条函数)拟合的,取 第一个字母 S,取断面积分一词的汉语拼音的第一个字母 D,亦即“;计算过程主要采用搜索递进法,分别取“搜索”和“递进” 一词汉语拼音第一个字母 S 和 D,亦即“;具有从一定角度审定储量功能,取“审定”一词汉语拼音声母的第一个字母,亦即“。 立足于传统储量估算法,吸取了地质统计学中关于地质变量具有随机性和规律性的双重性思想,距离加权法在考虑变量空间相关权时,权数与距离成反比的思想及“一条龙法”中提出的由直线改曲线的思想,用稳健样条函数及分维几何学作为数学工具,对传统断面法进行了深入系统地改造。克服其计算粗略、不准确、可靠性差以及由于缺乏自检功能而给地质工作带来的盲目性等种种弊端和不足,使断面法更加科学化。 1、的基本理论 (1)结构地质变量指仅反映出某种地质特征的空间结构及其规律性变化的地质变量,简称结构量。它既与所在的空间位置有关,亦与它周围的地质变量大小和距离有关,它们在一定空间范围相互影响。结构地质变量是 估算矿产储量及其精度的基础变量。对地质变量进行具体统计分析时,用数据稳健处理方法(权尺化)将原始数据处理成有规律数据,将离散型变量转换成连续型变量。可见,不是建立原始数据模型,而是建立权尺化处理后的数据模型。结构地质变量的求得,仅仅为资源/储量估算提供了可靠基础数据,储量估算还需要通过结构变量曲线来实现。结构变量曲线就是在工程坐标或断面坐标上过已知的以结构地质变量为点列所作的光滑曲线,简称结构量曲线。它们的形态反映了地质变量在空间的变化规律。构造出结构地质变量曲线,是 资源/储量估算中第二个重要课题。求过结构地质变量的点列的曲线,是数学拟合合问题。既然地质变量是自然光滑曲线,我们就可以采用三次样条函数(行拟合。(2)断面构形理论立足于传统端面法的核心思想,故 也是一种断面法资源/储量估算法。矿体圈定时,一般不考虑矿样品中是否有达到最低工业品位的样品,而笼统地只用边界品位、夹石剔除厚度和可采厚度为指标在断面上圈定矿体。然后根据工程取样提供的数据信息经过处理,直接用数学模型计算储量,而不是根据图上绘成的矿体面积计算储量,即不是直接用它的形态,而是用几何变形后的形态。2、 储量计算 在对传统断面法改造时,仍沿用基本公式,必须求取体积、质量(体重)和品位这三个参数(变量) ,不过 的求取方式与传统法不同。对于矿体诸地质变量都可以转化为点、线、面、体结构量,对于点、线量,可沿用传统法的加权法求得,再将求得的结果处理成点、线结构变量,对结构变量及结构变量曲线积分可得到面、体结构量,一次积分得到面结构量,二次积分得到体结构量。具体的 源/储量估算方法普通 :亦称样条函数储量计算法。它主要适用于形态简单,矿化连性较好的矿体的总体资源/储量估算;索法:适用于矿化和矿体形态变化较大的不同网度的总体资源/储量估算,它能满足几个工业指标条件灵活计算,能将其中满足工业指标的属于矿体部分的资源/储量估算出来,而舍去非矿部分;进法:随着观测点数递增利用依次提供的信息进行相应的资源/储量估算,用众多的有序计算值做出科学估计,以便达到比较接近真量,它适用于台阶储量和多品级动态储量以及为制定合理工业指标提供基础数据的计算。 度法在解决计量精度这个问题时,引入了分数维的概念,对估算储量能做出成功的精度预测,定量表征了估算储量的精确程度和控制程度,为储量级别的勘查程度的定量确定提供了可靠依据。 3、特点及应用条件 优越性:具有动态审定一体化计算储量之功能,不仅灵活多用,而且计算结果精确可靠;所估算储量的实际精度要比其他一些方法高,且能做出成功的精度预测,在技术上有突破;只需勘探范围内取样的原始数据,便可准确计算任意形态、大小的块段储量;可同时在多种不同工业指标条件下,自动圈定矿体、计算各类资源/储量;具有一套适用的 软件系统,使计算过程全部实现计算机化,从而实现了矿产储量计算的科学化和自动化。适用条件:适用性广,主要适用于内生、外生金属矿和一般非金属矿,不适于某些特殊非金属矿(如石棉、云母、冰洲石等) ;适于以勘探线为主的矿区,勘探线平行与否均可,断面是垂直、是水平不限,但要求最少有两条勘探线,每条线上至少有两个工程,预测精度时则要加倍;从详查到生产勘探以至矿山开采各个阶段,均适用。与克里格法相比 对工程数并不苛求,一般只要有数十个至百余个钻孔就能取得较好效果,当工程数较多时,其效果更好,而且计算量不会增加很多,这一条件显然要比克里格法优越。 七、储量精度估计及其评价方法(一)储量计算误差的分类及确定1、地质误差(类比误差) 地质误差(类比误差) ,是在地质勘探时对所获得的资料进行了不正确的内插和外推所产生的误差。包括对矿体几何形态和品位的变化的推断等。 其误差一般很大,随勘探工程密度增加而减少。加强地质研究是减小地质误差的有效途径。目前尚无完善的误差估计方法。2 、技术误差(测定误差)技术误差(测定误差)是由于对储量计算基本参数测量的不准确而产生的误差。包括:矿体厚度、孔斜、体重、湿度、品位、面积测量等。产生技术误差的原因:测量设备的不完善、测量条件的改变及测量者工作失误等。减小误差的途径:多次反复测量求平均值或采用校正系数;采用新的高精度的方法。估计技术误差的方法:用重复测量、检查测量的方法。3、方法误差是指由于选用不同的储量计算方法或不同的计算参数平均值方法所产生的误差。其中包括:储量计算方法本身的误差;计算储量计算参数平均值时用算术平均法或加权平均法带来的误差。减小方法误差的途径:根据矿体的特征和勘探工程布置正确选用方法。(二) 、误差检查方法1 重复测量方法 2 检查测量方法 3 探采资料对比方法(三)储量计算精度的估计1、据储量计算参数精度估计储量精度根据间接测量误差的传递原理,若储量计算参数:块段面积(S)、矿体厚度(m)、矿石体重(d)及矿石品位(C)等参数是相互独立的,则可推出计算金属误差(σ P)和矿石储量均方误差(σ Q)。2、储量的区间估计当用 N 个工程勘探矿体时,不用 N 个工程的资料一次计算金属储量 P,而是从 N 个工程中随机抽取 m 个独立样本进行估计
展开阅读全文
  石油文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
0条评论

还可以输入200字符

暂无评论,赶快抢占沙发吧。

关于本文
本文标题:第七节 储量计算
链接地址:http://www.oilwenku.com/p-53938.html
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服客服 - 联系我们
copyright@ 2016-2020 石油文库网站版权所有
经营许可证编号:川B2-20120048,ICP备案号:蜀ICP备11026253号-10号
收起
展开